
The E-Corridor Project is supported by funding under the Horizon 2020 

Framework Program of the European Union DS-2018-2019-2020, GA #883135 

` 

31/05/2021 

Version 1.0 

 

 

 

 

 

 

 

 

 

             

 

 

 

 

 

 

 

Due date of deliverable: 31/05/2021 

Actual submission date: 31/05/2021 

 

 

 

 

 

 

 

 

 

 

Project co-funded by the European Union within the Horizon 2020 Framework Programme  

Dissemination Level  

PU Public X 

PP Restricted to other programme participants (including the Commission Services) 

 

 

RE Restricted to a group specified by the consortium (including the Commission Services) 

 
 

CO Confidential, only for members of the consortium (including the Commission Services)  

 
 

 

D7.1  
 

Data Analytics Techniques Requirements 

and Architecture 

WP7 – Data Analytics techniques 

 

E-CORRIDOR 
Edge enabled Privacy and Security Platform for Multi Modal Transport 

Responsible partner: UTRC 

Editor: Stefano Sebastio 

E-mail address: stefano.sebastio@rtx.com 

Ref. Ares(2021)3584425 - 31/05/2021



H2020-SU-DS-2018-2019-2020 E-CORRIDOR – GA#883135                                                    Deliverable D7.1 

Page 2 of 110 

  

Authors: Stefano Sebastio, Riccardo Orizio, Amine Lamine 

(UTRC), Thanh-Hai Nguyen, Hoang-Gia Nguyen 

(CEA), Ilaria Matteucci, Gianpiero Costantino, 

Giacomo Giorgi, Andrea Saracino (CNR), Ruisong 

Han (WIT), Roland Rieke, Florian Fenzl (FhG), 

Roghayeh Mojarad, Koussaila Moulouel, 

Abdelghani Chibani (PEC) 

Approved by: Roland Rieke, Florian Fenzl, Christian Plappert, 

(FhG), Patrizia Ciampoli (HPE) 

 

Revision History 

 Version Date Name Partner Sections Affected / Comments 

0.01 16-Feb-2021 S. Sebastio, T.-H. 

Nguyen  

UTRC, CEA Initial table of content 

0.02 30-Mar-2021 I. Matteucci, G. 

Costantino 

CNR Contribution to T7.1, T7.3 and T7.5 

on driver identification and intrusion 

prevention system 

0.03 02-Apr-2021 R. Orizio UTRC Contribution to T7.1 on passenger 

location 

0.04 04-Apr-2021 R. Han WIT Contribution to T7.2 and T7.4 on CO2 

aware itinerary planning 

0.05 08-Apr-2021 R. Rieke, F. Fenzl FhG Contribution to T7.5 on automotive 

intrusion detection 

0.06 09-Apr-2021 A. Lamine UTRC Contribution to T7.1 passenger 

identification and contextual analysis 

0.07 12-Apr-2021 G. Giorgi CNR Contribution to T7.1 gait analysis 

0.08 15-Apr-2021 R. Mojarad, K. 

Moulouel, A. Chibani 

PEC Contribution to T7.1 face and activity 

recognition  

0.09 27- Apr-2021 G. Giorgi, A. Saracino CNR Contribution to Sec 7 – pilot specific 

analytics ISAC  

0.10 28-Apr-2021 T.-H. Nguyen CEA Contribution to T7.3 on OpenAPI for 

fully homomorphic encryption 

0.11 02-May-2021 T.-H. Nguyen CEA Contribution to T7.5 on 

homomorphic encryption-based 

intrusion detection 

0.11 04-May-2021 S. Sebastio UTRC Introduction, matching to use cases, 

contributions to project objectives and 

conclusion 

0.12 06-May-2021 S. Sebastio  UTRC Completed WPL review and 

submission to internal reviewers 

0.13 18-May-2021 S. Sebastio UTRC Integration of the review comments 

from FhG and HPE 

0.14 29-May-2021 R. Orizio, I. Matteucci, 

G. Costantino, R. Rieke, 

R. Han, A. Lamine, H.-

G. Nguyen, T.-H. 

Nguyen, S. Sebastio 

UTRC, 

CNR, FhG, 

WIT, CEA 

Improvements according to the 

feedback of the internal reviewers 



H2020-SU-DS-2018-2019-2020 E-CORRIDOR – GA#883135                                                    Deliverable D7.1 

Page 3 of 110 

Executive Summary 
This document contains requirements and architecture for the data analytics techniques 

constituting the toolbox of the Information Analytics Infrastructure (IAI) subsystem of the E-

CORRIDOR framework. The data analytics components included in the toolbox and their 

requirements have been designed and/or tailored to fulfill requirements and needs of the use 

cases identified by the three pilots of the project, namely AT (Airport-Train), S2C (Smart cities 

and car sharing) and MMT-ISAC (Multi-Modal Transportation Information Sharing and 

Analysis Center). 

Each component in the toolbox is discussed by considering the current state of the art (with the 

aim of identifying the technology gaps), its characteristic features and the planned maturation 

in E-CORRIDOR. Moreover, data and component requirements with respect to the ones of the 

architecture, identified in D5.1 (“Requirements for the E-CORRIDOR architecture") for the 

first milestone of the project at month six (M6), are reported. The requirements elicitation 

process carried out by the above mentioned three project pilots at M6 (respectively in 

deliverables D2.1, D3.1 and D4.1 – “Requirements for the Pilot”) are exploited here to show 

how the analytics proposed for the toolbox meet the pilots’ needs, are critical for the depicted 

scenarios and are therefore well-placed for integration in the multi-modal transportation 

domains. This has the twofold goal of easing further maturation of the data analytics 

components and (possibly) generating products for the pilots. Given the close collaboration of 

all the partners in project consortium, during the meetings some opportunities for synergies 

among analytics and advanced security services (through the ASI subsystem, WP8) have been 

identified and are presented here. 
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1. Data Analytics Techniques 
The E-CORRIDOR framework offers to its (data) prosumers (i.e., producer and consumer) a 

set of data analytics for (cyber-) security and advanced services tailored for the multi-modal 

transportation entities and their users. The whole framework, as described in detail in D5.2 

(“First version of E-CORRIDOR Architecture”), is composed of five main subsystems, denoted 

with blocks of different colors in Figure 1.  

The data analytics components constitute the analytics toolbox (see Figure 1 – component 1 

marked in red) of the Information Analytics Infrastructure (IAI) subsystem of the framework 

and are the focus of this deliverable. Through classification and prediction (e.g., through 

machine learning), additional knowledge is extracted from the data collaboratively shared in 

the Information Sharing Infrastructure (ISI) subsystem by the data producer. 

 

 

Figure 1 Architecture of the E-CORRIDOR framework (with red ovals some components mentioned in this 

section are highlighted). Please refer to D5.2 for a detailed description of the framework and its subsystems. 

 

Here are briefly reported the project objectives (Obj.) to which the activities carried out in Work 

Package (WP) 7 – “Data Analytics Techniques” contribute: (Obj. 2) define edge-enabled data 

analytics and prediction services in a collaborative, distributed and confidential way; (Obj. 3) 

define a secure and robust platform safe from cyber-attacks and able to ensure service 

continuity; (Obj. 4) improve, mature and integrate existing tools provided by the partners and 

tailored to needs of platform and pilots; (Obj. 5) provide mechanisms for a seamless access to 

multimodal transport; (Obj. 6) deliver pilot products. 

 

By taking into account the objectives of the E-CORRIDOR project (discussed in detail in 

Section 9) and to cover all the broad set of requirements expressed by the project pilots (Obj. 

1 

2 

3 

4 
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6) in the spectrum of privacy, security (Obj. 3), and services for the multi-modal transportation 

entities and users (Obj. 5), several analytics have been included in such a toolbox. Examples of 

such data analytics identified and designed, at the time of writing this deliverable (month twelve 

of the project, M12) are aimed at passenger and driver identification, itinerary planning, security 

and intrusion technologies. Over the course of the project, new analytics could be identified, 

and for the ones described in this deliverable it is expected a maturation (Obj. 4) in terms of 

accuracy, efficiency, novel features and capability to be executed in a hybrid edge-core cloud 

architecture (Obj. 2). 

 

Any stakeholder in the multi-modal transportation domains defined by the project pilots, 

including their users (e.g., driver or passenger) and external (authenticated) source of data can 

contribute to the collective generation of the data made available in the ISI and later exploited 

by the analytics. Therefore the data that the latter have to process are heterogeneous and span 

from video-camera feeds, CAN bus (controller area network) messages, OBD (on-board 

diagnostics) readings, IMU (inertial measurement unit) sensor data, RSSI (received signal 

strength indicator), travel preferences and directions just to mention a few. 

 

1.1. Structure of the Deliverable 

The remaining of this deliverable is structured as follows. In the following of this section, the 

flexibility embedded in the data analytics toolbox is described (see Section 1.2). Then, the main 

interactions of such toolbox with the E-CORRIDOR framework are discussed (see Section 1.3). 

Finally, the adopted naming convention (see Section 1.4) for the analytics identified at the time 

of writing this deliverable (and listed in Section 1.5) is introduced.     

Sections from 2 to 6, detail on the data analytics components available in the toolbox. The 

division in sections corresponds to the logical grouping presented above (and matches the tasks 

described in the Description of the Action, DoA, of the E-CORRIDOR project). After a brief 

overview providing a brief outlook on the context and summarizing the main features, for each 

component, the current state of the art is reviewed. Then, characteristics of the components, 

their expected functioning and adoption in the project pilots (including data input and output 

format requirements) are discussed. The description of each analytics component ends with 

tables summarizing their requirements (and the match to the ones identified for the E-

CORRIDOR platform at M6 and reported in D5.1), the application to the pilot use cases and 

potential synergies identified with other analytics and advanced security services (described in 

D8.1 “Advanced Security Services requirements and architecture”). Pilot specific analytics (in 

particular for the MMT-ISAC) are reported in Section 7. 

To remark the applicability of the described analytics and their importance for the pilots, in 

light of a successful demonstration and potential exploitation as products, Section 8 summarizes 

the match of the pilot use cases with the analytics components presented here. 

Finally, the contribution of the analytics to the objectives of the E-CORRIDOR project are 

discussed in Section 9 and conclusions are in Section 10. Bibliographic references are reported 

in Section 11. Acronyms used in the document and details on the data formats used by some of 

the analytics are reported in the Appendix. 
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1.2. A Plug-in Approach for the Analytics in the Toolbox 

The analytics toolbox is constituted by components deployed either as executable Java (JAR) 

[1] or as services packaged in software containers (e.g., with Docker [2]). By supporting a 

plugin approach, new analytics components can be dynamically added to the toolbox without 

any change required on the E-CORRIDOR platform. Thanks to such an approach new analytics 

can be defined (either by the technology providers of the project or by the pilots itself, even 

after the project end), the deployment effort is minimized and it is also possible to protect the 

source code. All in all, evolution, availability and flexibility of the E-CORRIDOR framework 

are ensured to accommodate additional requirements and needs identified by the project pilots, 

even after the termination of the project itself.  

 

Each component to be included in the analytics toolbox needs to comply with and expose a very 

simple REST-based [3] API (Application Programming Interface) constituted by: 

 START: to run the analytics over the set of data prepared in the virtual data lake (see Figure 

1 – component 2) by the ISI  

 STOP: to gracefully interrupt the execution of the analytics and restore its status 

 KILL: to abruptly interrupt the ongoing data analysis upon request of the IAI API e.g., in 

case a policy violation is detected 

 END: to notify the IAI subsystem of the correct completion of the data analysis and of the 

availability of the results in the ISI.   

Such an interface could be described through a standard and language-agnostic specification 

(e.g., OpenAPI [4]). 

 

The E-CORRIDOR framework can even accommodate data analytics developed before the 

project or as off-the-shelf components. In such a case, two possible approaches can be followed. 

To make it compliant with the controlled data sharing features of the framework a wrapper can 

be defined, or the analytics can be included in the set of the legacy analytics engine (see Figure 

1 – component 3). At the time of writing this deliverable at M12, despite the framework support 

this legacy mode, there is no component identified for being included in such a way. 

 

1.3. Interaction with the E-CORRIDOR Framework 

Other than individually calling the analytics in the toolbox, it is possible to compose them in 

workflows, thanks to the analytics orchestrator (see Figure 1 – component 4) provided by the 

IAI of the E-CORRIDOR framework. Such a composition is constituted by parallel and/or 

series operations of the original data analytics with the purpose of performing more complex 

analysis where the output of one component can be combined with the one of others and further 

analyzed by the subsequent component in the flow. 

 

These workflows can be specified at development or deployment time, are saved in the IAI and 

are later seen as novel analytics. Thanks to this approach the new analytics are ready to be used 

by the framework and the user and as a matter of fact transparently perceived as a single service 

without any additional complexity for the technology providers.  
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Workflows are specified through a simple Domain Specific Language (DSL) [5] written as a 

configuration files (e.g., in YAML format [6]) or as short code fragments written in a high level 

programming language. 

 

Disregarding if the analytics is a simple one in the toolbox or the result of an orchestration, a 

few basic steps are involved in the functioning of the data analysis in the E-CORRIDOR 

framework:  

1. on the call of an analytics a virtual data lake is created by the Buffer Manager available 

in the ISI subsystem; 

2. the analytics access to the data lake (e.g., through references to the Hadoop Distributed 

File System (HDFS) [7]) and performs its computation; 

3. the data in output are saved as Data Protected Objects (DPOs) through the ISI API; 

4. an END message is sent to the ISI to notify that the analysis is complete and the results 

are ready. 

Components in the E-CORRIDOR framework interact through the communications subsystem 

(see Deliverable D5.2 – “First version of the E-CORRIDOR architecture”) and are managed as 

RESTful [3] services. 

 

For a more detailed description of the E-CORRIDOR architecture and of the ISI and IAI please 

refer respectively to Deliverable D5.2 and D6.1 (“Sharing and Analytics Infrastructure 

Architecture). 

 

1.4. Naming Convention for the Analytics and their Requirements 

Data analytics in the toolbox and their requirements follow a naming convention similar to the 

one proposed in D5.1 and here briefly reported for the sake of completeness. Each component 

is referred as: 

E-CORRIDOR-IAI-[Id] 

to specify that the components belongs to the analytics infrastructure. The [id] is an acronym 

characterizing the data analytics function. 

The sequential number appended at the end refers to the requirements of the component. 

   

1.5. List of Components in the Analytics Toolbox 

At the time of writing this deliverable a number of data analytics have been identified by 

considering requirements and needs of the project pilots. In the following, the analytics 

components defined at the time of writing this deliverable (M12) are listed grouped according 

to their purpose: 

 Data analytics for driver and passenger identification: sensor data collected from cars, 

environmental and personal devices are processed by machine learning and artificial 

intelligence techniques to create models suitable for identification (see Section 2) 

o Secure Routine for driver identification – Driver DNA (E-CORRIDOR-IAI-SR) 

- Section 2.1 

o Passenger location and flow optimization (E-CORRIDOR-IAI-PL) – Section 2.2 
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o Passenger: Identification, Behavior, Context (E-CORRIDOR-IAI-PBI) – 

Section 2.3 

o Gait analysis – passenger authentication (E-CORRIDOR-IAI-GA) – Section 2.4 

o Face recognition – passenger authentication (E-CORRIDOR-IAI-FR) – Section 

2.5 

o Activity recognition – passenger authentication (E-CORRIDOR-IAI-AR) – 

Section 2.6 

 Privacy preserving itinerary planning: by exploiting users’ interest and preferences, the 

best multi-modal travel itineraries are inferred, predicted and self-adapted during the 

journey according to contextual changes (see Section 3) 

o CO2-aware Trip Planning (E-CORRIDOR-IAI-MMIP) – Section 3.1 

 Privacy preserving (Security) analytics: privacy-preserving analytics based on fully 

homomorphic encryption and secure multi-party computation are used to perform 

security checks on user shared data (see Section 4) 

o OpenAPI for Fully Homomorphic Encryption (FHE) (E-CORRIDOR-IAI-

FHEC) – Section 4.1 

o Secure Multiparty-computation for Routine based authentication - Private 

Secure Routine (E-CORRIDOR-IAI-MPCSR) – Section 4.2 

 Carbon foot print analytics: data collected in real time are used to infer by approximation 

the environmental impact of multi-modal journeys (see Section 5) 

o CO2 Analytics (E-CORRIDOR-IAI-CFA) – Section 5.1 

 Intrusion detection technologies (IDS): machine learning techniques are used to perform 

anomaly-based detections and to enforce cyber-security on all the transportation entities 

(see Section 6) 

o Automotive Intrusion Detection (E-CORRIDOR-IAI-CANIDS) – Section 6.1 

o Fully Homomorphic Encryption-based intrusion detection (E-CORRIDOR-IAI-

FHEIDS) – Section 6.2 

o Intrusion Protection System (IPS) – EARNEST (E-CORRIDOR-IAI-CANIPS) 

– Section 6.3 

 Pilot specific analytics: are components that, even if totally compliant with the E-

CORRIDOR framework and included in the toolbox, will run exclusively on the pilot 

premises mainly for design decision and being tailored for a specific application (see 

Section 7). 

 

Note to the reader: As the deliverable aims at describing all the data analytics techniques used 

in the E-CORRIDOR project, there are a multitude of different technologies in a single 

document that often require disparate technical knowledge. To help the readers in navigating 

the document, in the list above, a reference to the corresponding section where the component 

is described has been provided. Each description is self-contained (including contribution to the 

platform requirements, application to pilots and synergies) so that the reader can point to the 
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data analytics components more relevant for her own interests without reading all the previous 

descriptions.  

 

It is worth to remark that the above set of analytics have been selected by taking into account 

the input received by the project pilots at the time of writing this document. But thanks to the 

plugin approach new analytics may be added in the toolbox to accommodate any potential 

additional need raised during the execution of the E-CORRIDOR project. The same list of 

components available in the analytics toolbox, along with their logical grouping, is depicted in 

Figure 2.  

 

 

Figure 2 Analytics Toolbox in the IAI subsystem of the E-CORRIDOR framework. 

 

The analytics in the toolbox at M12 have a Technology Readiness Level (TRL) [8] spanning 

from level 3 to 4 (i.e., the research shows that the tool is feasible). Thanks to the support of the 

pilots and the evaluation of the components in their environments, throughout the execution of 

the project is expected to maturate the components up to TRL 6 or 7 (i.e., the tool demonstrated 

its capability in a realistic environment) and therefore support the achievement of Objective 4. 

Finally, being the analytics defined by taking into account the pilots requirements, the 



H2020-SU-DS-2018-2019-2020 E-CORRIDOR – GA#883135                                                    Deliverable D7.1 

Page 14 of 110 

challenges of their domains and their specific needs, the same will be used to deliver pilot 

products (Objective 6) and potentially even ease their adoption (Objective 7).  

 

All the tools in the toolbox are generally meant to be executed in a hybrid edge-cloud fashion, 

even if specific restriction could be imposed by the technology providers (e.g., in case of 

specific hardware requirements) or by the application. 
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2. Data Analytics for Driver and Passenger Identification – Task 7.1 
The components related to this task analyze sensor data to perform driver and passenger 

identification. Sensor data are collected from cars in case of the S2C pilot (e.g., OBD readings, 

GPS, CAN bus messages) or environmental and personal devices in case of the AT pilot (e.g., 

cameras, Bluetooth beacons, wearable and smartphone sensors). Thanks to machine learning 

and artificial intelligence algorithms these data are analyzed to create models for driver and 

passenger used for identification. The same models can also be exploited for behavioral and 

driving style analysis other than for authentication purposes. 

 

2.1. Secure routine for driver identification - Driver DNA [E-CORRIDOR-

IAI-SR] 

Even though the introduction of ICT in transportation systems leads to several advantages in 

terms of efficiency of transport, mobility, traffic management, and in improved interfaces 

between different transport modes, it also brings some drawbacks in terms of increased security 

challenges, also related to human behavior. For this reason, in the last decades, attempts to 

characterize drivers’ behavior have been mostly targeted towards risk assessment and, more 

recently, to the training of machine learning software for autonomous driving. 

Driver behavioral characterization can be used to build a general reputation profile that can help 

to create innovative, reputation-aware automotive services. As a first step towards realizing this 

vision, we present guidelines for the design of a privacy preserving way to collect information 

generated from vehicles sensors and the environment, and to compose such collected 

information into driver reputation profiles. In turn, these profiles are exchanged in a privacy 

preserving way within the infrastructure to realize reputation-aware automotive services, a 

sample of which are described in the following. As a fundamental component of the 

infrastructure, we show that: i) multi-dimensional reputation profiles can be formed building 

upon the recently introduced notion of driver DNA [9]; ii) multi-dimensional comparison of 

profiles can be achieved by means of a reputation lattice rooted in the notion of algebraic c-

semiring; and iii) a secure two-party mechanism can be used to provide services to drivers on 

the basis of their reputation and/or DNA’s parameters. 

2.1.1. State of the Art 

In the last few years, interest about the characterization of driver behavior according to 

information collected from the vehicle has consistently increased. However, to the best of our 

knowledge, none of the existing work attempts to link driver behavior to the notion of reputation 

and trust. 

One of the early works in this field is presented in [10], where the authors proposed a traffic 

simulation model incorporating assumptions about what a safe drivers’ behavior should be. The 

main outcome of the paper is the comparison between results obtained in the simulation and the 

real world. 

Other recent works [11], [12], present approaches to identify reckless drivers based on a 

combination of speed and acceleration. Both measures are retrieved from different ICT systems 

present in the vehicle itself. In [12], the information was retrieved from SD Card and GPS on 

vehicle. 

In [13], the driver is considered as part of the vehicle system (driver-in-the-loop), more 

specifically as the control unit of the entire system. In this way, the authors described three 

methods to identify driver behavior as a comparison with the actual and the expected behavior 

of the system by considering different aspects of the drive-in-the-loop vehicle system. 
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Works about how to link the driver behavior with traffic accidents, safety on roadside network, 

and possible rewarding are mostly related to the insurance world. For instance, reference [14] 

is about the risk of reckless drivers and how insurance reward can depend on the driver 

behavior. Adapting insurance fee to driver behavior is promoted as a method to incentivize 

drivers to drive more carefully and reduce accidents. 

To our best knowledge, the idea of characterizing driver’s behavior with the final aim of 

computing a comprehensive driver’s reputation profile and to realize reputation-aware 

vehicular services is a novelty of this component and presented for the first time in [15]. 

About reputation-aware vehicle service, several services for Intelligent Transportation Systems 

(ITS) have been introduced in the literature. Following the standardization work of European 

Telecommunications Standards Institute (ETSI), ITS applications (or service) have been 

categorized in a number of classes. While their requirements and operational constraints have 

been defined in ETSI, security specifications are not fully defined and mostly left to the single 

developers. For instance, secure and privacy aware versions of two representative classes of 

ITS applications are Driver Assistance – Road Hazard Warning, and Community Services. In 

case of road hazard warning, there is ample literature that studies under what conditions the 

communication network (V2V and V2I communication) is able to provide the adequate level 

of responsiveness necessary to enable early hazard detection [16]. Since security and privacy 

requirements as mandated by the proposed architecture will introduce significant 

communication/computational overhead, there is a need of carefully analyzing and testing the 

interplay between security level, communication performance, and achieved effectiveness in 

providing secure and early warning to the drivers. 

 

2.1.2. Proposed Approach/Technology 

The notion of Driver DNA [9] has been proposed to concisely represent a driver’s driving style 

starting from car-collected data analysis, integration with road and weather information, and 

comparison with peer drivers. The Driver DNA has been firstly proposed in [15] and it is made 

of four parameters: braking (b), turning (t), speeding (s), and RPM (rpm) (revolutions per 

minute). These four parameters are not directly comparable. Each parameter is measured with 

a rank ranging between 0 (lowest score) and 5 (highest score). The first parameter (braking 

intensity) is used to quantify a driver’s aggressiveness, the second (steering wheel angle) is used 

to quantify comfort in driving, the third parameter (driving above speed limit), which is also 

combined with weather information, is directly related to accident risk, while the fourth 

parameter (engine RPM) is used, when compared with values obtained by peer drivers, as a 

proxy of a driver’s fuel efficiency. 

Following [9], we represent the profile of each driver as a tuple of four elements (bi,ti,si,rpmi), 

with bi,ti,si,rpmi ∈ [0, 5], one for each parameter we are going to consider to identify the driver’s 

DNA. Using the profile, we associate to each driver a reputation value. 

In fact, the authors of [9] suggests graphically representing a driver’s driving style as a radar 

graph of the four dimensions, where a relatively larger area of the radar graph indicates a 

relatively better driver. Thus, the Driver Reputation score (RDi) is represented by the internal 

area identified by the radar graph derived by the four parameters of the driver’s DNA.  

Hence, each driver in the E-CORRIDOR architecture can be characterized by a multi-

dimensional reputation profile, which should be considered as a valuable and private 

information to the driver. Reputation profiles of drivers become a sort of passport in the E-

CORRIDOR framework. Thus, they can be exchanged in a secure and private way with 
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surrounding vehicles and roadside infrastructure to realize innovative reputation-aware 

vehicular services  

In fact, vehicles in E-CORRIDOR can ask for services, getting different quality and or prices 

depending on their driver’s reputation profile. Typically, we can assume that to obtain, e.g., a 

special discount on a service, a driver must provide her profile to be compared with an access 

threshold used by the service provider. This comparison function hits the driver’s privacy since 

the service provider will be able to know the entire profile in case of full profile disclosure, or 

at least a single parameter in the reputation profile.  

To protect the privacy of the drivers, we implemented the comparison function in a privacy-

preserving manner that make use of the Secure Two Party Computation (2PC) technique 

CBMC-GC v1.0 [17] that allows drivers to discover whether they meet the conditions for 

obtaining a certain service level without disclosing their profile.  

Examples of innovative “reputation-aware” services enabled by this component in the E-

CORRIDOR framework are described:  

Reputation-aware fuel cost. Currently, fuel cost is decided at the level of the single gas station, 

and it is applied independently of the driver’s attitude to save or waste fuel while driving. In an 

effort to incentivize fuel-efficient driving style, one might think of a scenario where fuel cost is 

personalized to reflect a driver’s fuel efficiency. When entering a gas station, the vehicle 

onboard software sends driver’s reputation information – in this specific case, both her 

reputation score and her fuel efficiency score – to the fog node installed at the gas station. After 

proper authentication, the driver will be offered a personalized fuel price: a relatively lower 

price for drivers with relatively higher reputation, and vice versa.  

Reputation-aware tolling. Similarly to the case of fuel price, also access to road infrastructure 

is currently oblivious to driving style, and is typically done based on the type of vehicle. 

However, a driver with a relatively higher risk profile (e.g., more aggressive, or speeding more 

frequently) might pose a relatively higher prospect cost to the infrastructure manager than a 

relatively more cautious driver, due to the higher risk of incurring accidents, damage road 

components, etc. One can then envision a scenario in which the price to access road 

infrastructure (highways, bridges, etc.) is personalized based on a driver’s reputation profile. 

Similarly to the gas station scenario, the vehicle onboard software shares driver’s reputation 

information with the fog node interfacing with the tolling system, and a driver is charged a 

variable amount that reflects her accident and damage risk profile.  

2.1.3. Data Format Requirement  

There is not a required format of data. It depends on the in vehicle and environmental sensors. 

The output is a Boolean flag that answers to the question about the goodness of the driver 

reputation. E.g., the access to the services can be granted only to the drivers having a reputation 

above a predefined threshold. 
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2.1.4. Platform Requirements 

ID Priority Requirement In order to fulfil 

Platform 

Requirement(s)  

E-

CORRIDOR-

IAI-SR-01 

MUST Data used to establish the driver 

DNA may require to be obfuscated 

or anonymized, e.g., data coming 

from vehicles that may provide 

information on drivers 

 E-CORRIDOR-

DM-01 

 E-CORRIDOR-

Sec-RC-01 

E-

CORRIDOR -

IAI-SR-02 

MUST Driver DNA analytics can be run at 

the edge. 
 E-CORRIDOR 

Ope-02 

E-

CORRIDOR -

IAI-SR-03 

SHOULD The In-Vehicle Infotainment (IVI) 

or Electronic Control Units (ECUs) 

may be used for collecting GPS and 

driving behaviour data. 

 E-CORRIDOR-Tst-

S2C-01 

 E-CORRIDOR-Tst-

S2C-02 

 

2.1.5. Application to Pilots 

Pilot S2C, ISAC 

Reference to Use cases 

or User stories 
 S2C-US-08: Driving behavior recognition  

 ISAC-US-01: Public cyber-threat information collection  

Brief description of the 

Use cases or User 

stories 

The above use cases refer to the possibility of providing customized 

services to the user. The reputation-based approach we propose aims at 

analyzing data collected by sensors belonging to the framework 

(vehicles, environment, etc.) in order to provide useful and customized 

services depending on the Pilot use cases. 

Match of the proposed 

approach/technology 

with the USs/UCs  

This analytics will help the stakeholders to achieve incentives 

depending on “reputation-aware” services and based on drivers style. 

Currently this component targets the automotive infrastructure but, in 

the future in principle, it can extended to build reputation and provide 

incentives even to the passengers of the AT pilot. 
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2.1.6. Potential Synergies  

Synergies with other 

components - Work 

package and Task  

 T8.3 

 

Title/brief description 

of the task 

The above task refer to Privacy aware interest-based service sharing.  

Description of the 

potential synergy with 

risks and opportunities 

According to the driver’s reputation and the application of Secure Two 

Party Computation, it is possible to provide services to users in such a 

way that drivers’ data are shared in a privacy preserving way. 

Dependencies on other 

components 

None 

 

 

2.2. Passenger location and flow optimization [E-CORRIDOR-IAI-PL]  

Indoor localization is a mature research area which gained a lot of traction in the recent years 

due to the availability of sensors supporting localization applications on smartphone devices. 

Outdoor localization services are based on accurate Global Navigation Satellite System 

(GNSS) sensors and now counts as many as 6.4 billion enabled devices worldwide [18]. The 

same high level of accuracy that these sensors provide in outside environments is not achievable 

in indoor settings due to signal attenuation, interferences and to loss of continuity and reliability 

of the service [19]. For these reasons, indoor localization requires a different approach based 

on different type of sensors. The idea of this component would be to utilize the Received Signal 

Strength Indicator (RSSI) of the Bluetooth Low Energy (BLE) device to estimate the position 

of the people moving indoors. We opted to use BLE signals over Wi-Fi and Micro-Electro-

Mechanical System (MEMS) accelerometers and gyroscopes signals due to its intrinsic 

characteristics as well as its affordability and availability on common smartphones and 

wearable devices. BLE signals have low range of effect (approximately 10-15 meters) which 

allow us to both locate people in a small area within the reach of the point of interests as well 

as to keep the signal communications low and localized in crowded areas, unlike Wi-Fi signals 

which have higher reach and would considerably increase the traffic generated to locate all the 

people in an area. Moreover, BLE-based localization would be agnostic to the different 

characteristics of how the person moves within the environment (e.g., type of walk, length of 

steps), and makes the inference of its position easier compared to the analysis and tuning that 

would be required if MEMS sensors would be deployed.  

With respect to the E-CORRIDOR project pilots, it would represent the passenger movements 

within the airport and train station premises. BLE devices are gaining more relevance due to 

their wide availability, both in environmental (e.g., Internet of Things, IoT) and personal 

(including wearable) devices. Estimating the passenger location with a high accuracy will 

enable further possibilities, such as passenger flow optimization, customer assistance and 

guidance in an unknown wide environment and tailored services. Furthermore, the location of 

the passenger can also be exploited to increase the accuracy of her authentication by expanding 

the set of contextual information. 
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2.2.1. State of the Art 

BLE technology has become widely available and affordable and can be used for many indoor 

activities, such as location estimation. Several research activities have explored indoor 

localization and user movement by leveraging the data gathered by MEMS accelerometers and 

gyroscopes, as presented by [20], [21], [22]. Despite a comparable and low cost for both BLE 

and MEMS devices, less effort has been devoted to BLE solutions and datasets exploiting BLE 

signals for indoor localization are rarer to find.  

The work done in [23] tries to overcome the lack of proper datasets and benchmarks. Their 

dataset has been generated in an indoor environment using BLE anchors (also referred as 

beacons) and smartphones replicating different scenarios with multiple actors. The scenarios 

have also considered the use of different transmission powers to send messages between devices 

as well as having two opposite types of communications (beacon to device and vice-versa). 

Despite its limited size in terms of scenarios, this dataset represents a valuable source for studies 

aiming at performing BLE-based localization and can be leveraged to push the research and 

innovation for indoor localization systems based on the BLE technology. 

BLE devices rely on RSSI values, which represent the intensity of the signal received by the 

device. These values can be used to estimate the position of the signal sender, as shown in [24] 

and [25], where the signal is used to train a probabilistic model based on the Dempster-Shafer 

theory to estimate the sender’s position. The estimation relies heavily on the external knowledge 

regarding the environment in which the user device is moving and also on the number of 

beacons used. 

A further interesting use of the BLE technology is the possibility to trace the interactions that 

different devices can have with each other. BLE devices have low range of action, a physical 

constraint given by the BLE technology. This limit can be exploited to track the proximity of 

two devices to each other with lower interferences over other technologies (e.g., WiFi). This 

characteristic has been proven useful and has been applied to help in tracking the contacts 

between different people and therefore to track the potential spread of the COVID-19 infections 

as presented in [26]. This work considers not only the tracking capabilities but also the 

possibility to do so while keeping in consideration the privacy of each user. The latter is one of 

the key features for the E-CORRIDOR framework and use cases, and an aspect deemed 

particularly relevant by the project pilots.  

 

2.2.2. Proposed Approach/Technology 

The passenger localization and flow optimization tool aims to: (i) estimate the position of a 

passenger when she is moving in an indoor environment (i.e., train station and airport areas), 

(ii) gather all the estimated passengers’ locations and use them to depict a picture of the 

passenger flow within the environment and, potentially, use this information to optimize critical 

crowd bottlenecks (by either redirecting the flow in less crowded areas or by increasing the 

personnel in such zones) and, (iii) guide the passengers throughout their journey with 

personalized privacy-aware messages to direct them to their points of interest. 

The first step that has to be achieved is having an accurate estimation of the position of the 

passenger inside the environment. We plan to use the Bluetooth technology for this task. We 

opted to only use BLE RSSI values over a mixture of RSSI and MEMS 

accelerometer/gyroscope data so that both the computation required to track the passenger as 

well as the amount of information shared between the stakeholders would be kept to a 

minimum. We assume that the indoor premises are equipped with several stationary BLE 

beacons (or anchors) that will communicate with the passengers’ BLE devices. The RSSI values 
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exchanged between the devices will be used to estimate the passenger position: the distance 

between the beacon and the passenger device is assumed to be directly proportional to the 

distance, i.e., the closer the device is to the beacon, the more powerful the signal exchanged 

will be, the further away the device is to the beacon, the less powerful the signal power will be. 

To enhance the estimation accuracy, it would be ideal to have the whole premises fully covered 

by overlapping beacons, so that the passenger will always be under the coverage of at least a 

couple of beacons. An example of a passenger’s movements and the BLE beacons to which her 

device can communicate with is shown in Figure 3. 

  

 

Figure 3: Passenger movement detected by different BLE beacons and the deployed E-CORRIDOR 

framework. 

 

An indoor environment can be subdivided in virtual zones, e.g., according to the displacement 

of environmental sensors (cameras, lidars, BLE beacons, etc.). Each virtual zone in which the 

premises are divided (in the Airport-Train pilot it could represent terminal, lounge, etc.) can 

have an instance of the E-CORRIDOR framework at the edge (running the whole framework 

with the IAI and ISI subsystems or a lightweight version of it). Thanks to the controlled and 

privacy-aware data sharing capabilities of the E-CORRIDOR framework, by collecting 

anonymized information on number and position of the devices in the area, a holistic view of 

the whole environment can be generated. The latter would be useful for managing critical 

infrastructures such as the ones represented by airport and train station. The managers of the 

infrastructure can thus access this information from the control room (where the master local 

instance of the E-CORRIDOR framework is supposed to be located) to generate an approximate 

map of the environment, how the flow is moving, which are the bottlenecks that require 

attention and apply mitigation or recovery strategies.  

Furthermore, by deploying the beacons in specific points of interest of the infrastructure, such 

as security screening and check-in kiosks, the estimated travel and sojourn times can be inferred 

and more thorough analysis can be built on top of this information. Similar pilot projects have 

been proposed and developed in Milano Malpensa airport (Italy) by [27]. This would be 
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enhanced by the privacy-aware capabilities and collaborative sharing and access to information 

provided by the E-CORRIDOR framework. 

The localization system can even work in a setting where beacons transmit information about 

their position in the virtual zone. Then, a lightweight E-CORRIDOR framework, including the 

IAI subsystem and the needed analytics in the toolbox, is installed in the passenger’s 

smartphone, infers the passenger position and interacts with the E-CORRIDOR node deployed 

in the zone to receive the above described services. 

The last purpose of this tool would be to guide passengers throughout their main point of interest 

in the indoor environment. This is enabled by the E-CORRIDOR framework which could 

provide information regarding the passenger flight details and guide her from the correct check-

in kiosk until her departure gate. To achieve such a turn-by-turn navigation, we plan to adopt 

the Eddystone protocol [28] and specialize it to send dedicated privacy-aware messages to each 

passenger. The edge ISI will have access to the needed information of the passenger with 

respect to her travel. This can be combined with the BLE localization component to help design 

her navigation throughout the environment. We envision that the only passenger related 

information shared in these navigation messages (from the E-CORRIDOR framework instances 

running in the virtual zone and on the passenger’s device) will be an identifier based on the 

Bluetooth device that she is using. Furthermore, the Eddystone protocol has a dedicated type of 

encrypted messages to further enhance the privacy of the exchanged messages. 

 

2.2.3. Data Format Requirement  

The data expected would mainly be the RSSI values of each device with corresponding 

identifiers of sender and receiver, and a timestamp. An example of the dataset presented in [23] 

is extracted and shown below. 

Timestamp Sender Identifier Receiver Identifier RSSI (signal strength) 

1540748414903 1070 1 -69 

1540748414903 1064 1063 -72 

1540748414912 1063 1062 -79 

1540748414912 1064 1062 -79 

1540748414914 1062 1069 -81 

 

The output would be a representation of the estimated position of the devices within reach of 

BLE anchors within the airport/train station. 
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2.2.4. Platform Requirements 

ID Priority Requirement In order to fulfil D7.1 

Requirement(s)  

E-

CORRIDOR-

IAI-PL-01 

MUST The accuracy and effectiveness of 

passengers’ localization and specific 

guidance messages depend on the 

DSA specified by each passenger, 

on the attributes of the latter and on 

contextual/environmental 

properties. 

 E-CORRIDOR-

DS-06 

 E-CORRIDOR-

DS-07 

 E-CORRIDOR-

DS-16 

 E-CORRIDOR-

DS-17 

 E-CORRIDOR-

DS-24 

E-

CORRIDOR-

IAI-PL-02 

MUST The passengers’ flow estimation 

will rely on the information gathered 

by all the passengers that allowed 

their data to be analyzed. 

 E-CORRIDOR-

DS-27 

 E-CORRIDOR-

DA-05 

 E-CORRIDOR-

DA-07 

E-

CORRIDOR-

IAI-PL-03 

MUST The guidance messages directed to 

specific passengers will be 

generated considering the privacy of 

the passenger. 

 E-CORRIDOR-

DA-10 

 E-CORRIDOR-

Ope-05 

E-

CORRIDOR-

IAI-PL-04 

SHOULD The estimated position of each 

passenger should be used to enhance 

her authentication. 

 E-CORRIDOR-

Use-02 

E-

CORRIDOR-

IAI-PL-05 

MUST The inferred passenger location is 

transmitted and stored (only for the 

needed time) in a privacy-aware and 

secure manner.  

 E-CORRIDOR-

DS-10 

 E-CORRIDOR-

DA-11 

 E-CORRIDOR-

Sec-IS-02 

E-

CORRIDOR-

IAI-PL-06 

SHOULD The analytics to locate the passenger 

can run either on the personal device 

(i.e., at the edge) or on the cloud. 

 E-CORRIDOR-

Ope-01 

 E-CORRIDOR-

Ope-02 

 



H2020-SU-DS-2018-2019-2020 E-CORRIDOR – GA#883135                                                    Deliverable D7.1 

Page 24 of 110 

2.2.5. Application to Pilots 

Pilot Airport-Train pilot 

Reference to Use cases 

or User stories 
 AT-US-01: Passenger Management and Operations 

 AT-US-03: Distributed and Combined Context Analysis in Sensor 

Network 

 AT-UC-01: PRM Passenger Assistance and Authorization 

 AT-UC-04: Privacy-preserving Passenger Monitoring 

 AT-UC-09: Sharing of Service Access Data 

 AT-UC-11: Notification of Service Disruption 

 AT-UC-12: Passenger Flow and Prediction 

 AT-UC-14: Notification on PRM Passengers’ Location 

Brief description of the 

Use cases or User 

stories 

The above use cases and user stories refer to passenger localization, 

monitoring and contextual services. Moreover, the owners of the 

infrastructure (i.e., airport and train station) can optimize their services 

by sharing data in a privacy-aware manner. 

Match of the proposed 

approach/technology 

with the USs/UCs 

From the point of view of the passenger, location-based information can 

be used to achieve a stronger authentication mechanisms and to receive 

better and tailored services (e.g., turn by turn navigation). The same 

information can be used by the airport and train station to improve 

operational and provide additional services.   

 

2.2.6. Potential Synergies 

Synergies with other 

components - Work 

package and Task 

 T8.1 

 T8.2 

 T8.3 

Title/brief description 

of the task 

The above tasks refer to privacy aware interest-based service sharing 

and the passenger’s contextual authentication. 

Description of the 

potential synergy with 

risks and opportunities 

The data gathered from the passenger have to be shared within the E-

CORRIDOR framework respecting the privacy policies set by the 

passenger itself. The same information can also be used to expand the 

contextual behavioral authentication of the passenger. 

Dependencies on other 

components 

None 
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2.3. Passenger: Identification, Behavior, Context [E-CORRIDOR-IAI-PBI] 

With the general increase of the number of passengers in airports and train stations experienced 

in the recent years, the number of deployed cameras has also been increased to maintain 

monitoring activities and behavior characterization of passengers.  In 2019, Paris Charles de 

Gaulle Airport received 76 million passengers. Accordingly, there has also been an increase at 

the level of workload of video operators to analyze and understand video content.  Automated 

analysis of large amounts of data is needed to process the data in real time and significantly 

enhance passengers monitoring, identification and analysis.   

Automatic monitoring and identification in crowded areas will afford continuous monitoring 

and behavior analysis without relying on constant human interaction.  Monitoring numerous 

people via multiple cameras is a challenging task, especially in complex and crowded areas 

such as airports and train stations with frequent occlusions and interaction between groups of 

individuals. 

In this context, we present an analytics to monitor, identify and characterize the environment 

surrounding the passenger. 

 

2.3.1. State of the Art 

Object monitoring is an important research area in Artificial Intelligence (AI) with a wide range 

of applications, such as visual surveillance systems.  Person detection using visual surveillance 

system is relying on manual methods of identifying unusual activities. However, it has limited 

capabilities and it is not very effective [29].  

Throughout the last decade, to monitor and capture person activities, the visual object tracking 

technologies have achieved significant progress, especially when deep learning has been 

applied, making the person monitoring  a breakthrough. Convolutional Neural Networks (CNN) 

have been largely adopted in learning complex systems where a single model includes all the 

intermediate necessary processing steps. CNN are therefore considered a reliable choice for 

end-to-end learning and have been applied for image representations where images are 

classified and directly mapped to the target labels (e.g., describing the objects present in the 

scene). Convolutional architectures have been used for solving supervised learning problems 

and assessing images for different applications. [30] used CNNs for predicting the location and 

extracting features of an individual user for tracking. [31] predicts trajectories of people based 

on their last positions using Long-Short Term Memory (LSTM) networks.   

In presence of multiple domains, to increase the effectiveness of the system, person re-

identification is often considered as a desirable feature. Person re-identification is defined as 

the task of associating the presence of the same person in different places at different times as 

detected by multiple environmental cameras. A comprehensive and recent review on the multi-

object tracking methods has been presented by [32]. In computer vision, person re-identification 

techniques are applicable to both static images and videos [33]. [34] used deep learning 

approach for re-identification. They focus on finding an improved network architecture, an 

effective set of features and defining a similarity function for comparing those features. [35] 

used group context by proposing ratio-occurrence descriptors to capture groups of people.  [36] 

adopted spatio-temporal relationships via cameras for person re-identification.   

 

2.3.2. Proposed Approach/Technology 

In this analytics, a deep learning based framework will be adopted to perform passenger and 

baggage detection and monitoring. Figure 4 shows a diagram of the proposed architecture of 

the component.  
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Figure 4 Architecture of the Passenger: Identification, Behaviour, Context component 

 

 

Every camera will be linked to three modular components. The first module takes in input a 

video stream and performs passenger detection. Detected passengers will be marked through 

bounding boxes and a temporal identifier (id) will be assigned to every passenger in the main 

entrance of the train station or the airport. 

 

The role of the second module is to identify every passenger. The temporal id will be replaced 

by the real identifier of the passenger as collected by the self-service kiosk and made available 

through the ISI and appropriate DSA. The environment surrounding the passenger will be used 

to enhance the identification during the detection phase and new classes representing the 

environment surrounding the passenger such as backpack, handbag, suitcase and wheelchair 

will be linked to the main model (representing the passenger). 

Afterwards, the third module takes every identified passenger and keeps monitoring for 

identifying their position, behavior and movement in the premises of the transportation 

infrastructure (either train station or airport). 

The results of the passengers monitoring will be logged into a database and stored for a defined 

time window. The journey analysis module can then perform additional analysis of the 

passenger behavior based on the collected data to extract further knowledge (e.g., to infer the 

experience of the passengers in a given terminal). This process can lead to support, as well as 

abnormal behavior detection.  

The multi-camera passenger monitoring and behavior analysis module will be used to match 

the scenario constituted by multiple cameras. It allows for passenger monitoring across multiple 

cameras, whether or not the cameras have overlapping field of-views.   

In order to maintain the balance of accuracy and real-time monitoring, YOLO v4 [37] as an 

object detection algorithm alongside with the Deepsort [38] as a tracking approach will be 

utilized.  
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The proposed component will allow the analysis of the passenger behaviours and their activities 

for high level surveillance tasks e.g., event and activity detection, crowd analysis or groups 

movement as well as infer group of passengers travelling together (that may be linked to the 

same Passenger Name Reservation, PNR). Thanks to these capabilities, the proposed analytics 

component can have several safety and security applications: suspicious behaviour prediction, 

criminal tracking, passenger tracking in a defined area, searching for lost children, monitoring 

of passengers with limited mobility to promptly identify the need for additional special services, 

etc. 

 

2.3.3. Data Format Requirement  

The input data can be described by a JSON file representing the set of cameras as a graph where 

nodes define the characteristics of the cameras and edges represent the connection between 

cameras if they corresponding covered areas are directly linked. An example of two connected 

cameras is described in the JSON file as follow: 

 
{ 

  "directory":../data/videos/", 

  "adjacency":{ 

    "Cam1":["1"], 

    "Cam2":["2"] 

  }, 

  "nodes":{ 

    "Cam1":{ 

      "file": "top.mp4", 

      "Char":{} 

    }, 

    "Cam2": { 

      "file": "bot.mp4", 

      "Char":{} 

    } 

  }, 

  "edges":{ 

    "1":{ 

      "from":"Cam1", 

      "to":"Cam2", 

      "data":{} 

    }, 

     "2":{ 

      "from":"Cam2",  

      "to":"Cam1", 

      "data":{} 

    }   

} 
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2.3.4. Platform Requirements 

ID Priority Requirement In order to fulfil 

Platform 

Requirement(s)  

E-

CORRIDOR-

IAI-PBI-001 

SHOULD The collected features of every 

passenger should be used to enhance 

the authentication process. 

E-CORRIDOR-Use-02 

E-

CORRIDOR-

IAI-PBI-002 

MUST The cloud service, after finishing the 

travel journey must delete the 

subject information. 

E-CORRIDOR-DS-10 

E-

CORRIDOR-

IAI-PBI-003 

MUST The collected passenger features are 

transmitted and stored in a privacy-

aware and secure manner.  

E-CORRIDOR-Sec-IS-

02 

 

 

2.3.5. Application to Pilots 

Pilot AT pilot 

Reference to Use cases 

or User stories 
 AT-US-03: Distributed Tracking Analysis in Sensor Network  

 AT-US-05: End to End Safe-Contact/Contactless Journey 

 AT-US-07: Document-free Secure Multimodal Travel 

Credential 

Brief description of the 

Use cases or User 

stories 

The above use cases refer to the possibility of providing a frictionless 

experience to the user while accessing to the transportation system. . 

Match of the proposed 

approach/technology 

with the USs/UCs  

The contextual and behavioural analysis can be used to support 

contactless and biometric-based access to the transportation services. 
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2.3.6. Potential Synergies 

Synergies with other 

components - Work 

package and Task  

 T8.1 

 T7.1 

Title/brief description 

of the task 

The above tasks refer to Multi-Biometric/Factor Authentication, 

localization services and activity tracking 

Description of the 

potential synergy with 

risks and opportunities 

Camera based analysis can be used along with other passenger data 

collected from other sensors and the analysis of other analytics 

components like gait from smartphone IMU, location based on BLE 

beacons, and RFID from passport, to perform a seamless and strong 

authentication through a multi-biometric and multi-factor approach. 

 

Dependencies on other 

components 

Multi-biometric and multi-factor authentication – T8.1 

 

 

2.4. Gait analysis – passenger authentication [E-CORRIDOR-IAI-GA] 

The authentication of a passenger is a fundamental procedure to check the person in every 

transportation hub, e.g., airport, train station, car station. Due to the long process that each 

passenger has to undergo before boarding, he must check-in, in some cases, few hours prior to 

their travel. The introduction of new authentication mechanisms based on biometrics, (e.g., face 

recognition, iris recognition, and fingerprint), has made it possible to reduce the computation 

time and increase the recognition accuracy. Despite this, the great diffusion of personal and 

wearable mobile devices able to collect unobtrusively data related to the user behavior has made 

more relevant new scenarios based on seamless authentication. With seamless authentication, 

biometric features such as human gait become a way to control authorized, without actually 

requiring user interaction. However, this analysis is a challenging task, prone to errors, with the 

need to dynamically adapt to new conditions and requirements brought by the dynamic change 

of biometric parameters. Gait recognition, or the measurement of a person’s walking pattern, 

may reach the accuracy of face recognition with the advantage of being less intrusive.  

The new biometric security system, based on gait analysis, can be exploited in a constrained 

path, like the gate check-in any transportation hub, for authentication and authorization 

purposes (e.g., to verify that the ticket corresponds to the passenger who has performed the 

check-in). 

 

2.4.1. State of the Art 

Advances in wearable technology have added computing capacity and sensors into 

smartphones, tablets, (smart) watches, but also shoes, clothes, and other wearable items. These 

enhanced objects act as enablers of pervasive computing, collecting data to provide additional 

smart services to their users. Several of these smart devices come equipped with built-in 

accelerometers and gyroscopes, which can be exploited to register the body motion of users 

useful for seamless authentication. However, most current solutions for sensor-based 
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authentication are mainly based on active behavioral mechanisms, which require direct user 

interaction [39]. 

The evolution of machine learning and its application to inertial data has been largely used also 

in the security field. Specifically, it is applied to authentication mechanisms based on soft 

biometrics. Various techniques have been proposed to analyze the behavioral usage of the 

smartphone through sensory data. In [40] and [41] are proposed authentication mechanisms 

where additional external devices perform the collecting phase. Specifically, in [40], an 

algorithm that exploits dedicated external hardware to gather and analyze inertial gait data is 

proposed. In [41], a multi-class machine learning algorithm is applied to users’ identity 

verification analyzing a different number of activities registered by heterogeneous sensors.   

A less intrusive system is implemented in [42]. The author proposed a deep-learning-based 

active authentication approach that exploits sensors in consumer-grade smartphones to 

authenticate the user. In [43] the authors use the gait analysis to identify users through a 

convolutional neural network.   

Most of the gait analysis works are focused on a unique type of walking pattern, whereas few 

works are interested in analyzing different kinds of walking actions. To this end, [44] introduced 

Hand Movement, Orientation, and Grasp (HMOG), a set of behavioral features to authenticate 

smartphone users continuously. HMOG features unobtrusively capture subtle micro-movement 

and orientation dynamics resulting from how a user grasps, holds, and taps on the smartphone 

when a user is walking or sitting. A machine learning mechanism trained on different walking 

actions allows to obtain a more robust learning process and, thus, an authentication mechanism 

that is less invariant to the user movement. 

 

2.4.2. Proposed Approach/Technology 

In the E-CORRIDOR framework, a machine learning based mechanism will be defined to 

implement an unobtrusive authentication system based on gait analysis usable in every 

transportation hub e.g., to verify that the ticket corresponds to the passenger that had performed 

the check-in. The system exploits a background smartphone application that collects inertial 

data from the gyroscope and accelerometer sensors and send them to a machine learning 

component that recognizes and learns the walking path of the person. The learnt walking 

features will be stored in a database when the person buys the travel ticket. Later, when the 

passenger enters in a gate check-in, the smartphone application will send the walking inertial 

data to the system that will extract the walking features and will compare them with the ones 

stored in the database. The application of the proposed system is described in Figure 5. 
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Figure 5 Gait analysis for passenger authentication in the transportation domain. 

 

The core component of the system is a Human Action Recognition (HAR). It is a deep learning 

network based on Recurrent Neural Network (RNN), able to analyze the inertial signal provided 

by the preprocessing component and infer the specific movement or action that a person is 

performing. This component is embedded in the Android application and analyzing the inertial 

data in a time window, it classifies the user activity as running, walking, walking upstairs, 

walking downstairs, sitting or standing [45].  

The entire process is composed by a pipeline of four phases described in the following: 

 Pre-training process: The HAR is trained to detect the correct user action on a big 

public dataset (HMOG dataset). 

 Data collection: The inertial data of the user are collected by the smartphone 

application in unobtrusive way. 

 Enrollment phase: The HAR is fine-tuned with the data of the user. 

 Feature extraction: A set of representative user walking features are extracted from 

the last layers of the HAR and stored in a database. 

 Similarity check: The walking features collected when the passenger is in the 

transportation hub and the set of walking representative features stored are compared 

with a similarity metric (e.g., Similarity with Dynamic Time Warping (DTW)). 
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2.4.3. Data Format Requirement  

The data expected to train the machine learning classifier and provide the similarity check 

would take as input the temporal sequence of the logs of the inertial data of the accelerometer 

(Acc) and gyroscope (Gyr sensors along the three axes x, y, z. 

 

Timestamp Acc x_axis Acc y_axis Acc z_axis Gyr x_axis Gyr y_axis Gyr z_axis 

252207918580802 -4.332779 13.361191 -0.7188721 -0.85321045 0.29722595 0.8901825 

252207968934806 -0.31944275 13.318359 -0.23202515 -0.8751373 0.015472412 0.16223145 

252208019288809 1.566452 9.515274 -0.01777649 -0.72016907 0.38848877 -0.28401184 

 

2.4.4. Platform Requirements 

ID Priority Requirement In order to fulfil 

Platform 

Requirement(s)  

E-

CORRIDOR-

GA-DM-01 

MUST The gait analysis system provides 

interaction through the edge device 

(smartphone) and the cloud service 

for the walking path analysis. 

E-CORRIDOR Ope-01 

 

E-

CORRIDOR-

GA-DM-02 

 

MUST The cloud service, after the 

authentication process must delete 

the subject information. 

E-CORRIDOR-DS-10 

E-

CORRIDOR-

GA-DM-03 

MUST The gait analysis system allows to 

control the access to every 

transportation hub through the 

walking path user verification. 

E-CORRIDOR-DS-11 
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2.4.5. Application to Pilots 

Pilot Airport-Train pilot 

Reference to Use cases 

or User stories 
 AT-US-02: Frictionless Multimodal Journey 

 AT-US-03: Distributed and Combined Context Analysis in 

Sensor Network 

 AT-US-05: End to End Safe-Contact/Contactless Journey 

 AT-US-07: Document-free Secure Multimodal Travel 

Credential 

 AT-UC-13: Privacy-aware Behavioral Identification 

Brief description of the 

Use cases or User 

stories 

The above use cases aim to make easy the travel of the user reducing 

the multiple user interactions with the transportation check-in 

systems ensuring minimum disruption in the context of 

authentication process, identification of the user documents and 

identify.    

Match of the proposed 

approach/technology 

with the USs/UCs 

The gait analysis approach is a continuous and unobtrusive 

authentication mechanism that exploit inertial sensors embedded in 

the smartphone user. Such unobtrusiveness can be exploited to 

reduce the user interaction during the authentication process in 

every transportation hub. 

 

2.4.6. Potential Synergies 

Synergies with other 

components - Work 

package and Task 

T8.1 

Title/brief description 

of the task 

Privacy aware seamless multimodal authentication 

Description of the 

potential synergy with 

risks and 

opportunities 

In the context of the seamless multimodal authentication, the gait 

analysis can contribute to reach the multimodal authentication 

mechanism thanks to the background analysis of the inertial data 

during the walking path. 

Dependencies on other 

components 

None 

 

 

2.5. Face recognition- passenger authentication [E-CORRIDOR-IAI-FR] 

In recent decades, interest in face recognition theories and algorithms has grown quickly. The 

following are just a few examples of concrete applications that use face recognition algorithms 

and that have gained attraction among industries: video surveillance, criminal identification, 

building access control, and autonomous vehicles. Different techniques, including local, 

holistic, and hybrid approaches, which provide a face image description using only a few face 

image features or the whole facial features, are developed. Since face recognition is a process 

of identifying or verifying the person's identity using his/her face, it is usually used in many 
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applications with consumers outside of smartphones services, such as airport check-ins, sports 

stadiums, and concerts. The basic steps of the face recognition process are as follows: i) face 

detection, ii) face capture, and iii) face match. The first step is essential in detecting and locating 

human faces in images and videos. In the second step, analog information (a face) is 

transformed into a set of digital information (data) based on the person's facial features. The 

third step is essential in verifying if two faces belong to the same person. Recognition of 

passengers’ faces with a high accuracy will increase the accuracy of their authentication by 

expanding the set of their contextual information. Developing a face recognition system with a 

high degree of robustness and discrimination poses several challenges, such as head orientation, 

lighting conditions, and facial expression. Moreover, face recognition systems usually need 

high processing time, high memory consumption and are relatively complex. 

 

2.5.1. State of the Art 

Face recognition is a challenging topic in several application domains, including video 

surveillance, criminal identification, building access control, and autonomous vehicles. In 

addition, many car companies are experimenting with face recognition approaches. One of their 

objectives is to use face recognition approaches to replace a face with a key for starting a car. 

Another objective is to change radio stations and seat preferences based on the driver. Face 

recognition can also increase drivers' safety by recognizing and alerting drivers if they are not 

focusing on the road. 

 

The existing face recognition approaches usually use different sensors, including RGB, depth, 

Electroencephalography (EEG), thermal, and wearable inertial sensors. There are three groups 

of sensors that may improve the reliability and the accuracy of a face recognition system: i) 

non-visual sensors, ii) detailed-face sensors, iii) target-focused sensors. Non-visual sensors, 

such as audio, depth, and EEG sensors, provide extra information, e.g., illumination variation 

and position shift situation, in addition to the visual dimension and improve the reliability of 

the recognition. Detailed-face sensors, such as eye-trackers, detects a small dynamic change of 

face, which may help distinguish background noise and face images. Target-focused sensors, 

such as infrared thermal sensors, can make the filtering of useless visual contents easier and 

may help resistance illumination variation [46].  

Figure 6 shows the face recognition structure, which includes the mentioned three basic steps: 

i) face detection, ii) face capture, and iii) face match. 

 

Figure 6. Face recognition structure 

  

In the literature, there are many techniques for face detection, such as Viola–Jones detector 

[47], [48], histogram of oriented gradient (HOG) [49] [50], and principal component analysis 

(PCA) [51], [52]. Moreover, the face detection step can be exploited for video and image 
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classification, object detection [53], region-of-interest detection [54]. Face capture techniques, 

such as HOG [55], Eigenface [56], independent component analysis (ICA), linear discriminant 

analysis (LDA) [51] [57], Scale-Invariant Feature Transform (SIFT) [58], gabor filter, local 

phase quantization (LPQ) [59], Haar wavelets, Fourier transforms [60], and local binary pattern 

(LBP) [61] [62] techniques are widely used to extract the face features. Correlation filters (CFs) 

[63] [64] [65], convolutional neural network (CNN) [66], and also k-nearest neighbor (K-NN) 

[67] are known techniques for face matching. 

 

The existing face recognition approaches can be classified into three main categories: i) local, 

ii) holistic (subspace), and iii) hybrid. In the first category, the recognition is performed based 

on the certain facial features, not considering the whole face. Approaches related to the second 

category use the whole face as input data and then project it into a small subspace or in 

correlation plane. In hybrid approaches, local approaches and holistic ones are combined to deal 

with their limitations while exploiting their advantages. The most commonly used local 

approaches for face recognition are LBP [68], Histogram of oriented gradients (HOG) [69], 

correlation filters (CFs) [49], SIFT [58], Speeded-up robust features (SURF) [53], Binary robust 

independent elementary features (BRIEF) [54], Fast retina keypoint (FREAK) [70]. Although, 

these approaches provide robust recognition under different illumination conditions and facial 

expressions, they are sensitive to noise, and invariant to rotations [46].On the other hand, the 

most commonly used holistic approaches for face recognition are Eigenface [56] and principal 

component analysis (PCA) [71], Fisherface and LDA [72], ICA, Gabor filters [73], Discrete 

wavelet transform (DWT) [74], Discrete Cosine Transform (DCT) [75], Gabor-KLDA [76], 

Kernel PCA (KPCA) [52], and Kernel Linear Discriminant Analysis (KDA) [77]. These 

approaches allow a better reduction in dimensions and an improvement in the recognition rate, 

however, they are not invariant to translations and rotations compared with local techniques. 

Hybrid approaches combine local and holistic approaches to offer better performance for face 

recognition systems. Some examples of hybrid face recognition approaches are as follows: 

 Gabor wavelet and linear discriminant analysis (GW-LDA) [78] 

 Over-complete LBP (OCLBP), LDA, and within class covariance normalization 

(WCCN) [79] 

 Advanced correlation filters and Walsh LBP (WLBP) [80] 

 Multi-sub-region-based correlation filter bank (MS-CFB) [81] 

 CNNs and stacked auto-encoder (SAE) techniques [82] 

 PCA and ANFIS [83] 

 DCT and PCA [84] 

 PCA, SIFT, and iterative closest point (ICP) [85] 

 PCA, local Gabor binary pattern histogram sequence (LGBPHS), and GABOR wavelets 

[86] 

 PCA and Fisher linear discriminant (FLD) [87] [88]  

 SPCA–KNN [89] 

 Convolution operations, LSTM recurrent units, and ELM classifier [90] 
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2.5.2. Proposed Approach/Technology 

In the E-CORRIDOR framework, a machine learning based mechanism will be defined to 

implement a face recognition tool usable in every kiosk located in the train station and airport. 

The tool exploits biometrics to map facial features from photographs coming from a set of 

cameras. For instance, the proposed approach captures the locations and outlines of each user’s 

eyes, nose, mouth, and chin to model the user’s face. It then compares the collected biometrics 

information with a database of known faces. As it is mentioned, face recognition can assist 

verification of personal identity. The proposed face recognition tool is described in Figure 7: 

 

 

Figure 7. The proposed face recognition tool 

 

The first component is capturing the images using cameras. The second one is extracting the 

unique facial data from the captured images. The third component is comparing; in this 

component, the facial data is compared with the database. The last component is matching 

which decides whether the sample (new image) matches with any images in the face database 

or not. 

The core of this tool is a Deep Neural Network (DNN) called residual neural network, which 

was introduced for image recognition [91]. After the process of face detection using Histogram 

of Oriented Gradients (HOG), the residual neural network is exploited for face recognition.  

In the context of the E-CORRIDOR project, for the sake of the privacy of users, there is no 

persistent face database of passengers and the processes take place at the edge of the system. 

To this end, we consider collecting pictures of the passengers’ face at the first checkpoint, e.g., 

where the passenger enters train station or airport. Then, the model is trained using the collected 

pictures. We plan to use a hybrid approach based on the DNN technique and HOG. In the 

checkpoints after the initial collection of face information, the model is verified against the 

pictures collected in the current checkpoint and eventually updated. The passenger’s facial 

information can be destroyed once the passenger leaves the airport to preserve privacy.  It is 

worth mentioning that our proposed model learns the features useful for face recognition 

incrementally. The entire process is composed of the following steps: 
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1- Collect face database at the first checkpoint 

2- Train face recognition model including face detection, face capture, and face match at 

the second checkpoint 

3- Retrain face recognition model at the following checkpoints 

 

2.5.3. Data Format Requirement 

In input the component will take color images with depth information (in RGB-D format). The 

produced output will be a Boolean value expressing if the detected face matches the one 

detected at the previous touch point.  

2.5.4. Platform Requirements 

ID Priority Requirement In order to fulfil 

Platform 

Requirement(s)  

E-

CORRIDOR-

IAI-FR-01 

MUST The accuracy and effectiveness of 

passengers’ face recognition is 

dependent on the DSA specified by 

each passenger, passengers’ 

activity, and on 

contextual/environmental 

properties. 

 E-CORRIDOR-

DS-05 

 E-CORRIDOR-

DS-06 

 E-CORRIDOR-

DS-07 

 E-CORRIDOR-

DS-17 

 E-CORRIDOR-

DS-23 

 E-CORRIDOR-

DS-24 

E-

CORRIDOR-

IAI-FR-02 

MUST Face recognition can be performed 

at the edge. 
 E-CORRIDOR 

Ope-02 

E-

CORRIDOR-

IAI- FR-03 

MUST IP connected camera and Light 

Detection and Range camera are 

used for face recognition to identify 

passengers  

 E-CORRIDOR-

Tst-AT-02 

 E-CORRIDOR-

Tst-AT-03 

E-

CORRIDOR-

IAI-FR-04 

SHOULD The face recognition of each 

passenger should be used to enhance 

the seamless authentication. 

 E-CORRIDOR-

Use-02 

E-

CORRIDOR-

IAI-FR-05 

MUST The inferred passenger face 

information is transmitted and 

stored (only for the needed time) in 

a privacy-aware and secure manner.  

 E-CORRIDOR-

DS-10 
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2.5.5. Application to Pilots 

Pilot Airport-Train pilot 

Reference to Use cases 

or User stories 
 AT-UC-01: PRM Passenger Assistance and Authorization 

 AT-UC-02: Passenger and Baggage Contextual Identification 

 AT-UC-03: Contactless Passenger Authentication and 

Authorization 

 AT-UC-04: Privacy-preserving Passenger Monitoring 

 AT-UC-06: Single Sign-On (SSO) Authentication 

 AT-UC-12 Passenger Flow Overview and Prediction 

 AT-UC-13 Privacy-aware Behavioral Identification 

 AT-US-01: Passenger Management and Operations 

 AT-US-03: Distributed and Combined Context Analysis in Sensor 

Network 

 AT-US-05: End to End Safe-Contact/Contactless Journey 

 AT-US-07: Document-free Secure Multimodal Travel Credential 

Brief description of the 

Use cases or User 

stories 

The above use cases and user stories refer to situations in which the 

passenger is moving within the premise of the airport.  

Match of the proposed 

approach/technology 

with the USs/UCs 

The data are used to recognize the face of passengers inside the airport. 

The data will also be used to perform flow assessments in the airport to 

support end-to-end safe-contact/contactless journeys. 

 

2.5.6. Potential Synergies 

Synergies with other 

components - Work 

package and Task 

 T8.1 

 T8.3 

Title/brief description 

of the task 

The above tasks refer to privacy aware interest-based service sharing, 

seamless multimodal authentication, and the passenger’s contextual 

authentication. 

Description of the 

potential synergy with 

risks and opportunities 

The data gathered from the passenger have to be shared within the 

framework respecting the privacy policies set by the passenger itself. 

The same information can also be used to expand the contextual 

behavioral authentication of the passenger. 

Dependencies on other 

components 

The sensor fusion and the context reasoning can provide a strong multi-

biometric and seamless multimodal authentication.  
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2.6. Activity recognition- passenger authentication [E-CORRIDOR-IAI-AR] 

Human activity recognition can be defined as the process of determining and naming activities 

using data collected from wearable, environmental, or vision sensors. In detail, human activity 

refers to the movements of one or more parts of the person’s body. The technology of Human 

activity recognition (HAR) has motivated the development of various context-aware 

applications in emerging domains, e.g., the Internet of Things (IoT), Ambient Assisted Living 

(AAL), and healthcare. HAR analyzes data acquired from different types of sensing devices, 

including vision sensors or/and embedded sensors. In the E-CORRIDOR project, the objective 

of using the HAR component is to obtain contextual information to enhance the authentication 

obtained by other components, such as face recognition and gait analysis.   

 

2.6.1. State of the Art 

The existing HAR approaches can be classified into two main categories: i) sensor-based HAR 

and ii) vision-based HAR. The sensor-based HAR approaches concentrate on investigating raw 

data extracted from wearable sensors and environmental sensors. In contrast, the vision-based 

HAR approaches analyze images or videos obtained from optical sensors [92]. Since not all the 

passengers will be willing to wear sensors (or share data from their wearable devices), the HAR 

component of this project is vision-based. Vision-based HAR approaches rely on visual sensing 

technologies, such as CCTV and camera, to record human activities [93]. These approaches 

depend on the quality of images, including image resolution, lighting environments, and 

illumination changes. 

In [94], 3D and depth data are used for the recognition of human activities. 3D skeleton-based 

human representation and activity recognition approaches are studied in several works [95] [96] 

[97]. Indeed, spatiotemporal human representation based on 3D visual perception data is a 

rapidly growing research area. In general, spatiotemporal human representations can be 

classified into two main categories depending on whether they use RGB-D information or 3D 

skeleton data. Due to skeleton-based human representations' robustness to variations of 

viewpoint, human body scale, motion speed, and real-time, online performance, these 

approaches have attracted an increasing attention [95]. 3D skeleton-based representations allow 

modeling the relationship of human joints and encode the whole body configuration [95]. 

For obtaining 3D skeleton data, there are several commercial devices, such as motion capture 

systems, time-of-flight sensors, and structured-light cameras. Figure 8 shows several 3D 

skeletal kinematic human body models provided by the different devices; e.g., the OpenNI 

library tracks 15 joints; Kinect v1 SDK tracks 20 joints; and the Kinect v2 SDK tracks 25 joints. 

 

 

Figure 8. Several skeletal human body models obtained from different devices [95]. 
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Recently, deep learning methods are extensively used for skeleton-based human 

representations. Similar to using deep learning methods for feature extraction from images 

where raw pixels are typically used as input, skeleton-based human representations constructed 

by deep learning methods generally rely on the raw joint position information. In [98], an end-

to-end hierarchical Recurrent Neural Network (RNN) for the skeleton-based representation 

construction is proposed. In this study, the raw positions of human joints are directly used as 

the input to the RNN. In [99], raw 3D joint coordinates are used as input for an RNN with Long 

Short-Term Memory (LSTM) to learn human representations automatically. 

 

2.6.2. Proposed Approach/Technology 

In the E-CORRIDOR framework, the activity recognition component is based on a deep 

learning method to model human activities using 3D action sequences. Human actions can be 

considered as time series of configurations of skeletal data of users. The latter can be modeled 

using the 3D locations of major joints of the users’ bodies. In other words, each sample is 

represented as a sequence of these configurations. RNNs and LSTMs have been used to learn 

sequential data in different applications. One of the main limitations of traditional RNNs is their 

inability to keep the long-term representation of the sequences, making them unable to find 

relations among long ranges of inputs. To deal with this limitation, LSTM was introduced; 

LSTMs keep a long-term memory inside each RNN unit and learn when the information stored 

inside its internal memory cell should be remembered or forgotten. 

In the proposed activity recognition, we plan to use a part-aware LSTM human action learning 

model. Body joints move in groups in human actions, while each group can be mapped to a 

major part of the body. Interactions between body parts or with other objects can be used to 

interpret actions. In the proposed part-aware LSTM human action learning model, we don't 

keep a long-term memory of the entire body's motion in the cell, but we split it into part-based 

cells. In other words, we keep the context of each body part independently; there are individual 

input, forget, and modulation gates for each part's cell; however, the output gate is shared among 

the body parts. The output of the model can be seen as a combination of context information of 

independent body parts. In the proposed model, the body joints are grouped into five parts: 

torso, right hand, left hand, right leg, and left leg. At each frame, we concatenate the 3D 

coordinates of the joints within each part and use them as the part's input representation. 

One of the main characteristics of our activity recognition model is needing limited training 

parameters, which avoid the overfitting problem. This can be explained by the fact that the 

traditional LSTM has full connections between all the memory cells and input features using 

an input modulation gate. Moreover, the memory cell is used to represent the long-term 

dynamics of the entire skeleton over time, resulting in a large number of training parameters 

prone to overfitting. In our activity recognition model, unnecessary links are dropped to deal 

with this problem since the entire body’s dynamics, represented in the memory cell, are divided 

into the dynamics of body parts. The proposed model learns the common temporal patterns of 

the body parts independently and then combines them to recognize activities. 

Figure 9 shows the architecture of the activity recognition model. One can observe that each 

body part has its individual input, forget, and modulation gates while the output gate is shared 

between body parts.  
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Figure 9. Architecture of the activity recognition model 

 

2.6.3. Data Format Requirement 

For each passenger, sequences of RGB videos with depth information are collected. Moreover, 

3D skeletal data and infrared (IR) videos can be exploited. The resolutions of RGB videos are 

expected to have a resolution of at least 1920x1080, whereas depth maps and IR videos of 

512x424. Three dimensional skeletal data are expected to contain the 3D coordinates of 25 body 

joints at each frame. In output the component will produce the label of the corresponding 

activity.  
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2.6.4. Platform Requirements 

ID Priority Requirement In order to fulfil 

Platform 

Requirement(s)  

E-

CORRIDOR-

IAI-AR-01 

MUST The accuracy and effectiveness of 

passengers’ activity recognition is 

dependent on the DSA specified by 

each passenger, and on 

contextual/environmental 

properties. 

 E-CORRIDOR-

DS-05 

 E-CORRIDOR-

DS-06 

 E-CORRIDOR-

DS-07 

 E-CORRIDOR-

DS-17 

 E-CORRIDOR-

DS-23 

 E-CORRIDOR-

DS-24 

E-

CORRIDOR-

IAI-AR-02 

MUST Activity recognition can be 

performed at the edge. 
 E-CORRIDOR 

Ope-02 

E-

CORRIDOR-

IAI- AR-03 

MUST IP connected camera and Light 

Detection and Range camera are 

used for activity recognition to 

identify passengers  

 E-CORRIDOR-

Tst-AT-02 

 E-CORRIDOR-

Tst-AT-03 

E-

CORRIDOR-

IAI-AR-04 

SHOULD The activity recognition of each 

passenger should be used to enhance 

the seamless authentication. 

 E-CORRIDOR-

Use-02 

E-

CORRIDOR-

IAI-AR-05 

MUST The inferred passenger activity 

information is transmitted and 

stored (only for the needed time) in 

a privacy-aware and secure manner.  

 E-CORRIDOR-

DS-10 
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2.6.5. Application to Pilots 

Pilot Airport-Train pilot 

Reference to Use cases 

or User stories 
 AT-UC-01: PRM Passenger Assistance and Authorization 

 AT-UC-02: Passenger and Baggage Contextual Identification 

 AT-UC-03: Contactless Passenger Authentication and 

Authorization 

 AT-UC-04: Privacy-preserving Passenger Monitoring 

 AT-UC-06: Single Sign-On (SSO) Authentication 

 AT-UC-12 Passenger Flow Overview and Prediction 

 AT-UC-13 Privacy-aware Behavioral Identification 

 AT-US-01: Passenger Management and Operations 

 AT-US-03: Distributed and Combined Context Analysis in Sensor 

Network 

 AT-US-05: End to End Safe-Contact/Contactless Journey 

 AT-US-07: Document-free Secure Multimodal Travel Credential 

Brief description of the 

Use cases or User 

stories 

The above use cases and user stories refer to situations in which the 

passenger is moving within the premise of the airport.  

Match of the proposed 

approach/technology 

with the USs/UCs 

The output of the activity recognition analysis is used to characterize 

the activity of passengers inside the airport and the train station. The 

data will also be used to perform flow assessments in the airport to 

support end-to-end safe-contact/contactless journeys. 

 

2.6.6. Potential Synergies 

Synergies with other 

components - Work 

package and Task 

 T8.1 

 T8.3 

Title/brief description 

of the task 

The above tasks refer to privacy aware interest-based service sharing, 

seamless multimodal authentication, and the passenger’s contextual 

authentication. 

Description of the 

potential synergy with 

risks and opportunities 

The data gathered from the passenger have to be shared within the 

framework respecting the privacy policies set by the passenger itself. 

The same information can also be used to expand the contextual 

behavioral authentication of the passenger. 

Dependencies on other 

components 

The sensor fusion and the context reasoning can provide a strong multi-

biometric and seamless multimodal authentication. 
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3. Privacy Preserving Itinerary Planning – Task 7.2 
Task 7.2 - Privacy Preserving Itinerary Planning - is dedicated to the design, implementation 

and maturation of analytics to infer or predict the best multi-modal travel itineraries for end-

users (e.g., passengers, mobility service users, drivers). The analytics will consider users’ 

interests and preferences, the CO2 footprint of the possible itineraries, price, time and number 

of connections. The analytics designed in this task should be able to use anonymized data, to 

not hinder the user’s privacy. Also, they need to be self-adaptive, recomputing the itinerary at 

runtime, according to possible context change or critical situations on the initial itinerary. 

Itinerary planning will be an important data analytics functionality for people to securely access 

the multi-modal transport service within the E-CORRIDOR framework and transport operators 

to evaluate the performance of their provided transport service (e.g., service coverage). In this 

section, we focus on defining the requirements for a CO2-aware trip planning data analytics 

tool that will be integrated into IAI, considering the E-CORRIDOR scenarios and pilot use 

cases. 

 

3.1. CO2-aware Trip Planning [E-CORRIDOR-IAI-MMIP] 

The CO2-aware Trip Planning data analytics tool will explore approaches for integrating 

promising mobility solutions (e.g., electric vehicle car sharing and on-demand bus service) with 

public transit to enhance individuals’ mobility. End users can plan their trips and gain access to 

innovative shared or on-demand mobility concepts and solutions, through the trip planning tool 

provided by E-CORRIDOR. Moreover, personal trip preferences such as transport modes and 

carbon footprint will be considered when planning trips, to enhance the overall user experience 

and contribute in realizing societal goals (e.g., European Green Deal).  

In this subsection, we will first review the state-of-the-art trip planning technologies and tools, 

and then propose E-CORRIDOR’s approach to designing this data analytics tool and applying 

it to E-CORRIDOR pilots. 

 

3.1.1. State of the Art 

In this subsection, we have conducted a survey to compare the features of several commercial 

off-the-shelf online trip planners and identify the features that we aim to deliver within E-

CORRIDOR. Specifically, we extract the evaluation metrics mainly from the use cases defined 

by the project, their popularity, and the support for open source. Hence, six online trip planning 

tools have been chosen, and the comparison result is presented in the following table. Besides, 

it should be noted that this comparison matrix is not exhaustive, considering the number of trip 

planning tools we have surveyed [100], and just keeps the most representative ones. 
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Table 1. A brief comparison of several popular trip planning tools. 

Tool Name Open 

Source 

Supported 

Transport 

Modes 

Map Data GTFS 

support 

Real-time 

Traffic  

CO2 

estimation 

Google Map/ 

Transit [101] 

No car, bicycle, walk, 

transit 

Proprietary Yes Yes No 

TripGo [102] No car, bicycle, walk, 

transit, taxi, car-

sharing and more. 

OSM Yes Yes (use the 

live traffic 

from 

Google or 

TomTom) 

Yes 

OpenTripPlanner 

(OTP) [103] 

Yes car, bicycle, walk, 

transit 

OSM Yes Partially 

(GTFS-

Realtime) 

No 

Open Source 

Routing Machine 

(OSRM) [104] 

Yes car, bicycle, walk  OSM 

(and NED) 

No No No 

OpenRouteService 

(ORS) [105] 

Yes car, bicycle, walk, 

transit (bus) 

OSM No No No 

GraphHopper 

[106] 

Yes car, bicycle, walk, 

transit (bus), 

truck, scooter 

OSM Yes No No 

 

These trip planners can be classified as open-source and closed source ones, when considering 

their support for open source. The former category is represented by Google Map/ Transit and 

TripGo, while the latter is represented by OpenTripPlanner (OTP). These commercial closed-

source trip planners have a stable performance and wide applications, but are hard for testing 

new features and integrating with other solutions. However, both can support multiple transport 

modes and real-time traffic and service information, and TripGo even supports CO2 estimation. 

Thus, there is a trend for the trip planner to become smarter, greener, and more real-time. 

For open-source trip planners, all of them use the OpenStreetMap (OSM) [107] data for routing 

and support several common transport modes. It should be noted that OTP supports more transit 

modes (e.g., bus, tram, subway) and has implemented lots of experimental features through its 

Sandbox [108]. Regarding the support for General Transit Feed Specification (GTFS) [109], 

which is a data specification that defines public transportation schedules and associated 

geographic information, OTP supports both GTFS and GTFS-Realtime [110], enabling it to 

consider both the static and real-time service information for route calculations. Last, none of 

these trip planners officially support carbon footprint estimation or prediction, due to the focus 

of their development work. 

All in all, by conducting this survey, we have seen some great features from these trip planners, 

such as the support for open-source communities, being real-time and user-friendly, and the 

willingness of raising awareness of carbon footprint from transport domains. 

 

3.1.2. Proposed Approach/Technology 

The CO2-aware Trip Planning data analytics tool will be mainly based on the OpenTripPlanner 

2 (OTP2) due to its remarkable characteristics of supporting open source, multi-modal 

transport, and GTFS (including GTFS-Realtime and GTFS-Flex). The tool will allow end-users 
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to define an origin and destination within a specific pilot region, and receive personalized multi-

modal itineraries which both include flexible transport services provided by E-CORRIDOR 

partners and consider users’ interests and preferences (such as the CO2 footprint of the possible 

itineraries, price, time and number of connections).  

The following figure shows the architecture of OTP2, which is adapted from Figure 4 in [111] 

by referencing and analyzing the source codes of OTP2 on GitHub. To be specific, the core of 

the OpenTripPlanner architecture is a routing engine written in Java that finds efficient paths 

through multi-modal transportation networks built from OpenStreetMap (OSM) and GTFS data. 

The Routing API is a RESTful web service that responds to trip planning requests with returned 

itineraries in a JSON or XML representation, while the Graph Visualizer provides a JavaScript-

based front end to show the map and trip planning options. Additionally, Graph Visualizer also 

needs to invoke Graph Builder to obtain the map data. However, the OTP instance can also 

work without a graphical user interface by calling the Routing API directly. Thus, RESTful 

APIs to use the core functionalities of the component will be provided through the IAI. The 

front end will be customize only if required by the considered use case.  

 

 

Figure 10. OTP2 architecture, adapted from [111]. 

 

The OTP Routing Core involves two separate services for its proper functionality, which are 

OTP Transit Index API and Graph Builder. The Transit Index API is a RESTful web service 

that reads GTFS feeds and feeds the information into the routing core. GTFS contains public 

transportation schedules and associated geographic data and is a vital data source for supporting 

multi-modal trip planning. Furthermore, Graph Builder makes a graph for representing road 

networks, out of various open-source geographical map data such as OSM. Map data is essential 

for the proper operation of the OTP Routing Core. 

To deliver a versatile CO2-aware trip planning tool, the core research and development (R&D) 

work will be conducted around the following aspects: 

 Modification of OTP Routing Core to support new mobility modes and services (mainly 

car-sharing and on-demand bus service originated from WP3) and new routing options 

(least CO2 emission). 

 Enhancing the Transit Index API to include CO2 profiles of various transportation 

modes to empower further CO2 estimation. 

 Improve the available privacy preservation features. 
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For the third aspect, the trip planning tool can decide whether to log all the incoming (trip 

planning) requests for later analysis. This is an optional feature since some transit operators and 

agencies may use the logs to identify existing or unmet transportation demand. A log will 

contain the following eight fields: 1) date and time the request was received; 2) IP address of 

the user; 3) arrive or depart search; 4) arrival or departure time; 5) all transport modes selected; 

6) origin latitude and longitude 7) destination latitude and longitude 8) travel duration in 

seconds and the number of transit vehicles used in that itinerary returned to the user. It should 

be noted that most of these fields are essential for trip planning requests and should be supplied 

by users when using the tool. Nonetheless, they are not linked with the identities of users since 

the trip planning tool does not require any login.  

In future development efforts of our component, we will also consider using anonymized user 

information (provided by prosumers shared through the ISI) to support the automation of trip 

planning. An E-CORRIDOR prosumer can define in DSAs which data can be shared with the 

trip planning tool and how the trip planning tool can use the data needed for planning a trip 

(e.g., current location and timestamp). However, the trip planning tool still needs the 

cooperation from prosumers since the data fields such as arriving or departing and destination 

locations should be indicated by users. If the data shared in ISI contains more private data such 

as the preferences of transport modes, we will also consider using the FHE tool provided by the 

E-CORRIDOR framework to avoid accessing user data directly. All in all, the proposed trip 

planning tool will consider the privacy issues in its lifecycle and utilise the privacy preservation 

tools of the E-CORRIDOR framework to resolve privacy concerns.  

 

With the introduction of new mobility modes and service, we adapt the search logic of the 

routing engine to accommodate the needs originated from E-CORRIDOR pilots and user cases. 

However, we will remain adopting the same routing algorithms Generalized cost A* [112] and 

RAPTOP [113]) due to their reasonable performance. 

 

3.1.3. Expected Data Format  

In this subsection, the public datasets or data feeds to be used by the itinerary planning data 

analytics will be listed and explained. The itinerary planning data analytics tool needs to build 

a transit network and a road network during the bootstrap stage, and this lays the foundation for 

further routing work. The expected data here refers to the transit and map data needed by the 

itinerary planning tool to build a transportation network (also called “graph”). 

GTFS and GTFS-Realtime (for bus service providers such as Pildo in the S2C pilot of the 

E-CORRIDOR project) 

The General Transit Feed Specification (GTFS) is a data specification that allows public transit 

agencies to publish their transit data in a format that can be consumed by a wide variety of 

software applications. [109]. Besides, GTFS include a static component, GTFS-Static [114], 

which is mandatory and contains schedule, fare, and geographic transit information and a real-

time component, GTFS-Realtime [110], which is optional and contains arrival predictions, 

vehicle positions and service advisories.  

Public transit agencies need to provide their transit data in the GTFS format to allow itinerary 

planning tools to consume that data in an interoperable way and utilize accurate and even real-

time transit information for routing calculations. Besides, GTFS should be prepared by 

following the relevant specifications and fully validated, before publishing them on the web for 

public access. 
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For the E-CORRIDOR use cases (mainly S2C-UC-03), it should be noted that to support on-

demand business service, Shapes contained in a file shapes.txt, which describe the path that a 

vehicle travels along a route alignment, should be provided. Relevant requirements can be 

referenced in [115]. 

General Bikeshare Feed Specification (GBFS) [116] 

The General Bikeshare Feed Specification (GBFS) is the open data standard for shared mobility. 

Similar to GTFS, GBFS makes real-time shared-mobility data feeds in a uniform format and 

publicly available online. It should be noted that even though the “Bikeshare” may imply GBFS 

was originally proposed for bike-sharing, GBFS does support other shared mobility service 

such as car-sharing and scooters. 

Car-sharing service providers such as (Clem’ in WP3) should prepare their GBFSs in order to 

make the transit information (such as car-sharing stations, the number and types of available 

cars) available for trip planning tools. The current release for GBFS is v2.2, and this version 

should be respected in E-CORRIDOR’s implementation. 

 

3.1.4. Platform Requirements 

ID Priority Requirement In order to fulfil 

Platform 

Requirement(s)  

E-

CORRIDOR-

IAI-MMIP-01 

SHOULD The multi-modal trip planning tool 

should be able to pull data (such as 

public transit feeds) from external 

sources, with specified polling 

intervals. 

 E-CORRIDOR-

DS-20 

 E-CORRIDOR-

Tst-Int-S2C-02 

 

E-

CORRIDOR-

IAI-MMIP-02 

MUST Data used to automate trip planning 

needs to be obfuscated or 

anonymized to enhance the privacy 

preservation.  It should be also 

deleted after a certain amount of 

time. 

 E-CORRIDOR-

DM-01 

 E-CORRIDOR-

DM-02 

 E-CORRIDOR-

Sec-RC-01 

 E-CORRIDOR-

DS-10 
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3.1.5. Application to Pilots 

Pilot Car-sharing pilot 

Reference to Use cases 

or User stories 
 S2C-US-05: Trip planning and Carbon footprint. 

 S2C-UC-03: Trip planning and carbon footprint analysis  

Brief description of the 

Use cases or User 

stories 

The above use case/user story refers to a scenario where travellers plan 

to calculate optimized routes for their multimodal trips according to 

their criteria and check relevant trip information, and calculate and 

track carbon footprint info of their trip both before and after trips.  

Match of the proposed 

approach/technology 

with the USs/UCs 

To support the multi-modal transport service within the E-CORRIDOR 

framework, a privacy-preserving and versatile trip planner will be a 

traveler-oriented service within the E-CORRIDOR IAI Analytics 

Toolbox.  OTP 2 can meet most of the demands derived from the 

US/UC and is open to support more advanced trip planning features 

with further R&D work.   

 

3.1.6. Potential Synergies   

Synergies with other 

components - Work 

package and Task 

 Task 7.4 Carbon foot print analytics 

Title/brief description 

of the task 

T7.4 aims at designing analytics for inferring by approximation, with a 

limited knowledge of all involved elements, the actual CO2 footprint in 

multi-modal transport system. This task will provide analytics which 

can estimate the CO2 footprint according to information acquired in 

real time, such as adjusting travel time, driving style, fuel quality, etc. 

These analytics will be performed in a privacy preserving manner, 

using anonymized or generalized data, or differential privacy. 

Description of the 

potential synergy with 

risks and opportunities 

The analysis of carbon footprint relies significantly on the trip 

information. The transport vehicle used and travelling distance are the 

two most important factors for CO2 estimation.  

By designing more accurate CO2 estimation algorithms within T7.4 and 

integrating these algorithms with our trip planning tool, we can better 

present the carbon footprint information of potential trips to travellers 

and allow them to choose more carbon-free transport solutions.  

Dependencies on other 

components 

Carbon foot print analytics in Task 7.4 
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4. Privacy Preserving (Security) Analytics – Task 7.3 
The main objective of this task is to define a generic OpenAPI platform which allow to easily 

integrate privacy preserving analytics to be applied on shared cybersecurity information. The 

task will also design and implement secure analytics exploiting Homomorphic Encryption, 

extending the CEA (partner of the E-CORRIDOR project) crypto-computing compiler, and 

analytics which exploit other privacy preserving techniques such as anonymization, 

generalization and differential privacy. The analytics developed will be based on both statistical 

analysis for vulnerability and attack correlation, exploiting cascade analysis and machine 

learning for attack pattern recognition, malware and text (email) analysis, network-based attack 

detection. This task will put a particular attention in developing analytics which have a good 

trade-off between accuracy and ensured privacy, also aiming at minimizing performance 

overhead. 

In this section, we propose two approaches for privacy preserving analytics:  

 OpenAPI for Fully Homomorphic Encryption  

 Private Secure Routine 

 

  

4.1. OpenAPI for Fully Homomorphic Encryption [E-CORRIDOR-IAI-

FHEC] 

The Fully Homomorphic Encryption (FHE) Analytics is a part of E-CORRIDOR Analytics 

Toolbox. It is based on Cingulata which is a source to source compiler developed by CEA1, and 

BigPi platform used for applying homomorphic cryptographic techniques which on top of 

allowing the scrambling of data in order to protect its confidentiality also provides the necessary 

mathematical building blocks for performing privacy-preserving calculations, by the execution 

of general algorithms directly on encrypted data. It is described in Figure 11. 

                                                 
1 https://github.com/CEA-LIST/Cingulata 
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Figure 11: High level view of BigPi platform 

 

The BigPi platform is based on Cingulata toolchain. This toolchain architecture is pictured in 

Figure 12. It consists mainly of the following components: 

 A compiler infrastructure for high-level cryptocomputing-ready programming, taking 

C++ code as input. 

 Boolean circuit optimization, parallel code generation and «cryptoexecution» runtime 

environment. 

 Optimized prototypes of the most efficient homomorphic encryption systems known so 

far. 

In Figure 12, Cingulata first compiles an application written in C++ language into a Boolean 

circuit (blue area). Whereupon, Cingulata optimizes the circuit to improve performance (red 

area). To save bandwidth, transcryption can be performed with a homomorphic-friendly 

standard cryptosystem (green area). In the end, the circuit is evaluated over ciphertexts using a 

homomorphic scheme (red area). 
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Figure 12: Cingulata Architecture 

 

4.1.1. State of the Art 

Homomorphic encryption (HE) is a recent cryptographic method allowing performing 

computation directly on encrypted data, without the need of decrypting it. As such, the 

encryption schemes possessing homomorphic properties can be very useful to construct privacy 

preserving protocols, in which the confidential data remains secured not only during the 

exchange and the storage but also for the processing. In a context of data outsourcing and of 

cloud computing, the homomorphic encryption is a mechanism that helps to protect data from 

intrusions from the cloud provider itself. The service provider (cloud) processes the received 

data homomorphically and sends the encrypted result to the end user, owner of the 

homomorphic secret key.  

In real world cloud applications using FHE encryption, one or several entities interact with the 

cloud and, to preserve the privacy of each user, their data are sent encrypted over the cloud. 

The service provider processes the received data homomorphically and sends the encrypted 

result to an end user (owning the FHE parameters and, hence its secret key). The latter one 

decrypts the result using its own decryption key. Here, the service provider can compute almost 

any functions over the encrypted data and acts transparently with respect to each entity using 

only public information and homomorphic encrypted data.  
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In order to address the practicality issues, we dispose nowadays of several tools and methods 

to bring to reality homomorphic-based cloud applications. There are several FHE schemes quite 

efficient (each one with its advantages and disadvantages) as well as several open-source 

libraries implementing it (e.g., SEAL 2 , PALISADE 3  or TFHE 4 ). Moreover, it exists a 

theoretical framework (Chimera) allowing to switch between these different cryptosystems in 

order to choose the most appropriate for various parts of the computation in the homomorphic 

domain. The CEA team has worked on the design, development and maintenance of the open-

source Cingulata compiler environment (https://github.com/CEA-LIST/Cingulata), the first 

operational tool of this kind. The integration of TFHE (standing for Fast Fully Homomorphic 

Encryption over the Torus and belonging to the 3rd generation of FHE schemes) into Cingulata 

compilation chain was realized in June 2019. As such, Cingulata offers the possibility to execute 

Boolean circuits, either with BFV cryptosystem (and thus the execution is dependent of the 

multiplicative depth) or with TFHE (only 13ms to perform a gate evaluation) techniques, in the 

E-CORRIDOR platform and provides an added – value of enhanced privacy – protecting 

framework.  Developing and adopting Cloud – first deployment strategy, the secure sharing 

approaches based on homomorphic encryption help ensuring data confidentiality while 

allowing secure processing. 

 

4.1.2. Proposed Approach/Technology 

Homomorphic encryption (HE) is an encryption method which allows to perform computation 

on encrypted data without decrypting it. Such schemes are known to be very useful to construct 

privacy preserving protocols even in its classical version. As example, homomorphic 

encryption has been used as a key-tool in the popularization of electronic-based voting scheme. 

Another application of homomorphic encryption is Private Information Retrieval, which is a 

communication efficient interactive protocol which allows a user to retrieve an item in a 

database without revealing which item he is looking for. This paradigm has found a number of 

applications in numerous contexts: private searching, keyword search, private storage, 

anonymous authentication, etc. Another very popular scenario which makes the benefits of 

homomorphic encryption is cloud computing: a user relies on some computing resources from 

a cloud provider to perform expensive computation on sensitive data. These scenarios have in 

common that Fully HE (FHE) encryption is used as a method which allows the scrambling of 

data in order to protect their confidentiality via the execution of algorithm on encrypted data. 

In real world applications using FHE encryption, one or several entities interact with the cloud. 

To preserve privacy of each user, the data are sent encrypted over the cloud. The service 

provider processes the received data homomorphically and sends the encrypted result to an end 

user (owning the FHE parameters and, hence its secret key). The latter one decrypts the result 

using its own decryption key. Here, the service provider can compute almost any functions over 

the encrypted data and acts transparently with respect to each entity using only public 

information and encrypted data. 

                                                 
2 https://github.com/microsoft/SEAL 

3 https://github.com/gchq/Palisade 

4 https://github.com/tfhe/tfhe 

https://github.com/CEA-LIST/Cingulata
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Figure 13: Homomorphic encryption allows computation on encrypted data without decrypting it in untrust 

environments. 

 

The underlying mathematical objects used to conceive fully homomorphic encryption schemes 

are Euclidean lattices. The security of almost all known FHE construction relies on the problem 

of finding short vector or basis in a high dimensional lattice. Gentry's solution relies on ideal 

lattices over algebraic number fields. In 2012, Brakerski, Gentry and Vaikuntanathan [117] 

improved this scheme without using bootstrapping; they proposed a generalized construction 

secure under the popular Learning With Errors assumption and its ring variant. Then Brakerski 

[118] proposed a new scale invariant scheme that does not require modulus switching. In 2012, 

Fan and Vercauteren (FV) [119] proposed a ring variant scheme and improved its efficiency. 

The so-called BGV and FV cryptosystems which are already implemented in version Cingulata 

1.0 [120]. The 3rd generation of FHE with fast bootstrapping techniques called TFHE - Fast 

Fully Homomorphic Encryption over the Torus based on [121] [122] is released in the version 

Cingulata 2.0 [120] since June 2019.  

 

Our Cingulata open source version offers a compiler chain with high-level language 

development targeting HE execution based on manipulating Boolean circuits. That is a directed 

graph G = (V, A) which vertices are either inputs, outputs or operators (XOR, AND) and which 

arcs corresponds to data transfers. The following constraints are imposed to a compiler targeting 

HE execution [123] [124]: 

 No if conditions (unless regularized by conditional assignment). 

 No data dependent loop termination (it needs upper bounds). 

 Array dereferencing/assignment in O (n) (vs O (1)). 

 Algorithms always realize (at least) their worst-case complexity! 

In terms of technology design, this compilation chain is composed of three layers: a front-end, 

a middle-end and a back-end. The front-end transforms code written in C++ into its Boolean 

circuit representation. The middle-end layer optimizes the Boolean circuit produced by the 

front-end. The back-end homomorphically executes the Boolean circuit over encrypted data. 

Two HE libraries are supported by our Cingulata compiler: (i) an in-house implementation of 

[119] and (ii) the publicly available TFHE library. 

 

A simple "hello world" example written using Cingulata is: 

CiInt a{CiInt::u8};      // create an unsigned 8-bit variable 

CiInt b{CiInt::u8v(42)}; // use helper function to create  
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                         // an unsigned 8-bit 

CiInt c{-1, 16, false};  // or manually specify value,  

                         // size and signedness 

a.read("a");            // read variable a and b 

b.read("b");        

 

c = a + b; 

 

Using the FV cryptosystem this program is homomorphically executed in less than 5 seconds 

and using TFHE in less than 1 second, whereas by applying BFV in 𝑍𝑛  with matrix 

multiplication and bootstrapping (an option available in the SEAL library), the program is 

completed after 0.5 second. 

In the E-CORRIDOR project, we use the Pattern Searching functionalities. The algorithm is 

quite simple thanks to the FHE performance and allowed operations. For reducing computation 

times, a pre-processing should be executed on the client side in order to extract the principal 

text to analyze, referred as T. Using a list of sensible patterns which are already encrypted in 

homomorphic format and stored in a database, for each encrypted pattern, the component seek 

and check whether those pattern are present in T. From our last experiments, the check of 5000 

encrypted sensible patterns is completed in less than 1 second.  

In the context of the S2C pilot, checking, in a privacy preserving manner, the validity of a 

driving license in a collaborative database of multiple car sharing actors from different countries 

constitutes an interesting use case. The performance of the PaternSearch scheme have been 

tested in an implementation exploiting 40 threads and applying the SEAL 3.5.1 library. Analysis 

and decryption algorithms have been executed with 3 different data sets respectively constituted 

by 4.000, 8.000 and 16.000 encrypted driving licenses. The table below shows the average time 

(in second) of 3 executions of each algorithm. The time for encrypting a vector is negligible 

and therefore it is not considered in this simple benchmark.   

# of driving licenses Evaluation time (second) Decryption time (second) Total (in second) 

4.000 0.477 0.061 0.46 

8.000 3.591 0.116 3.7 

16.000 39.257 0.256 39.5 

  

4.1.3. Data Format Requirement  

To use and facilitate encrypting data in FHE format, the data input in plaintext is provided in 

the format below:  

Prefix Data_Value 

Index Data 1; Data Value in plaintext 

… 

Index Data n; Data Value in plaintext 

Where the prefix is an index constituted by any alphanumeric sequence.  

In case of the driving licenses discussed before the input format was constituted by: 

1; FR-13-090413302170-PTH 

2; FR-75-190475302143-LKM 

3; FR-92-490492302132-CDR 
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4.1.4. Platform Requirements 

ID Priority Requirement In order to fulfil D5.1 

Requirement(s)  

E-

CORRIDOR-

IAI-FHEC-01 

MUST The Mapper functionality grants 

Prosumers that the translation of 

data sharing constraints is 

compliant and consistent from the 

high level to the low level 

specification. 

 E-CORRIDOR-

DA-03  

 E-CORRIDOR-

DA-05  

 

E-CORRIDOR 

-IAI-FHEC-02 

MUST Data used to identify drivers may 

require to be transformed into a 

common data format to work with 

the analytics. 

 E-CORRIDOR-

DA-02 

E-CORRIDOR 

-IAI-FHEC-03 

MUST The In-Vehicle Infotainment (IVI) 

or Electronic Control Units 

(ECUs) may be used for collecting 

GPS and connection behaviour 

data. 

 E-CORRIDOR-

Tst-S2C-01 

 E-CORRIDOR-

Tst-S2C-02 

 

4.1.5. Application to Pilots 

Pilot AT, S2C, ISAC pilot, 

Reference to Use cases 

or User stories 
 AT-US-06: De-silo and Co-optimize Operations Data 

 AT-US-04: Advanced Security Analytic Services  

 ISAC-US-03: ISAC-MMT cyber-threat information analysis 

 ISAC-US-04: ISAC-MMT cyber-threat notification 

 ISAC-US-07: sharing automotive cyber-threat information 

analysis 

 ISAC-US-06: Automotive cyber-threat information analysis 

 S2C-US-01 : eWallet 

 S2C-US-06 Cybersecurity notifications: communicate about 

threats 

 S2C-US-07 Secure sensitive data that would be shared from end 

to end 

Brief description of the 

Use cases or User 

stories 

This user stories refer to the access of sensitive data and the execution 

of cyber-security analysis. 

Match of the proposed 

approach/technology 

with the USs/UCs 

The adoption of this analytics will allow the E-corridor framework to 

identify connection IP in black list or white list, or text analysis. 
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4.1.6. Potential Synergies  

Synergies with other 

components - Work 

package and Task 

 WP8 – T8.3 

Title/brief description 

of the task 

The above tasks refer to Privacy Aware Interest-Based Service Sharing 

Description of the 

potential synergy with 

risks and opportunities 

The FHE API could constitute a building block for preserving the 

privacy while providing services based on the user interests. 

Dependencies by other 

components 

None 

 

4.2. Secure Multiparty-computation for Routine based authentication - 

Private Secure Routine [E-CORRIDOR-IAI-MPCSR] 

Vehicles circulating on roads generate huge amount of data about both the driver and the vehicle 

itself. Such data can be used for different purposes, e.g., data generated may indicate the type 

of driving style or used to identify drivers. However, when processed, these data may reveal 

sensitive information. So, they should be processed with respect to drivers’ privacy. 

We propose Private Secure Routine (PSR) as a paradigm with two main objectives: i) identify 

drivers depending on their habits/routine and ii) keep private drivers’ data. We implemented 

PSR exploiting the Secure Multi-Party Computation (MPC) technique against a honest-but-

curious attacker model. 

 

4.2.1. State of the Art 

In literature there are several solutions based on machine learning and neural network (NN) 

techniques for driver identification. Among them, we report the ones that we consider more 

relevant with respect to the Private Secure Routine. 

Micale et al. [125] propose Secure Routine (SR), a paradigm that identifies drivers according 

to their routines and way of drive. The authors use Random Forest algorithm and define a 

procedure to select the features that better represent each driver. SR was tested on datasets 

[126], with a precision of 99,8% and a recall of 98,5% and [127], with a precision of 99,6% and 

a recall of 98,1%. 

Martinelli et al. compared different Decision Trees algorithms on dataset Θ using all features 

on the research [128] and using only the six best features in [129]. Authors obtained up to 99,2% 

of precision and recall using J48. 

Uvarov et al. [130] highlight the issue of car manufacturers that use non standard IDs of sensors’ 

data of the CAN messages. It is not always possible to obtain the databases with the IDs 

information of each vehicle. Hence, authors verified how accurate can be driver identification 

models using only public sensors’ data available with every OBD-II dongle. In the experiments, 

they use the dataset Θ and removed every feature not publicly available. Authors’ best result is 
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79% of accuracy using Random Forest in multi-driver identification, i.e., identify who is 

actually driving the car, whereas on the owner identification problem authors obtained 99% of 

accuracy. 

Feng et al. [131] predict human mobility by using Federated Learning technique. Vehicles work 

together to create a model with the help of a server. Each vehicle customizes the model using a 

“personal adaptor” to better predict personal mobility patterns. 

Costantino et al. [15] propose a driver reputation characterization calculated in a privacy 

preserving way by using secure Multi-Party Computation. They collect vehicles’ sensor data to 

calculate the Reputation score. The authors describe some example of ITS services that can be 

customized according to the reputation of the driver. The reputation score is calculated without 

machine learning. 

 

4.2.2. Proposed Approach/Technology 

The Private Secure Routine (PSR) is a paradigm to identify drivers belonging to the same 

vehicle in a privacy-preserving manner. Private Secure Routine is built on top of the Secure 

Routine (SR) paradigm [125]. The advantages of PSR are twofold:  

 PSR is able to distinguish among several drivers depending on their routine. While SR 

is able to identify only one driver for a target vehicle, referred to as the owner of the 

vehicle, PSR is able to identify more than one authorized driver for a target vehicle.  

 PSR guarantees that information about drivers and vehicles are exchanged in a privacy-

preserving way by exploiting the secure multi-party computation technique.  

The PSR paradigm takes as input all the pieces of information about drivers and vehicles 

circulating in the infrastructure and generates models of each driver in each vehicle. This is 

made by combining Federated Learning [132] and Secure Multi-Party Computation (MPC) 

[133], [134] protocol, as cryptography technique.  

Federated Learning (FL) allows multiple peers to generate a common model, (e.g., a neural 

network), without sharing their data in order to overcome critical NN training issues, e.g, data 

privacy. Secure Multi-Party Computation is a cryptography technique that involves 𝑛 parties, 

where each party 𝑖 holds the input 𝑥𝑖, and all participants want to compute a function 𝑓 (𝑥1, 𝑥2, 

..., 𝑥𝑛) maintaining private each party input. The function 𝑓 in a secret sharing scheme is 

randomly split into 𝑛 secrets, named shares, in such a way that certain subsets of shares can be 

used to reconstruct the secret and others reveal nothing about it.  

The Private Secure Routine paradigm is implemented by using PySyft framework, which is a 

Python library that implements the secure Multi-Party Computation (MPC) technique for 

private training of Neural Networks [135]. The framework maintains both parameters of the 

model and the dataset private. Note that the PySyft implementation of MPC is secure against 

the honest-but-curious adversaries [135] but cannot guarantee security against active attackers. 

Some parties could exchange their shares and potentially reconstruct the original values.  

To identify drivers in a vehicle, the Private Secure Routine paradigm creates a model able to 

identify each driver of a target vehicle that circulates on the PSR infrastructure. Model 

generation depends on different situations that can occur and involve both drivers and vehicles.  
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We assume that all communications among vehicles and infrastructure happen through secure 

channels. This will overcome possible fully malicious attacks. Also, we use an asymmetric 

cryptography protocol [136].  

 

4.2.3. Data Format Requirement  

There is not a required format of data. It depends on the in-vehicle and environmental sensors. 

Hence, data can be CAN messages collected from the OBD-II port or interacting directly with 

the in-vehicle network. E.g., from the OBD-II port information such as GPS coordinates, RPM 

and fuel consumptions can be retrieved and exploited by the component. The output is a 

Boolean flag stating if the driver has been identified as an authorized driver or not. 

 

4.2.4. Platform Requirements 

ID Priority Requirement In order to fulfil 

Platform 

Requirement(s)  

E-

CORRIDOR-

IAI-MPCSR-

01 

MUST Stakeholders may require running 

analytics expressing conditions to 

preserve confidentiality over the 

shared data. 

 E-CORRIDOR-

DS-09 

E-

CORRIDOR-

IAI-MPCSR-

02 

MUST Data used to identify drivers may 

require to be obfuscated, 

anonymized or other privacy-

preserving technologies must be 

adopted.  

 E-CORRIDOR-

DM-01 

 E-CORRIDOR-

Sec-RC-01 

E-

CORRIDOR -

IAI-MPCSR-

03 

SHOULD Data used to identify drivers may 

require to be transformed into a 

common data format to work with 

the analytics. 

 E-CORRIDOR-

DA-02 

E-

CORRIDOR -

IAI-SR-02 

MUST Driver DNA analytics can be run at 

the edge. 
 E-CORRIDOR 

Ope-02 

E-

CORRIDOR -

IAI-SR-03 

SHOULD The In-Vehicle Infotainment (IVI) 

or Electronic Control Units (ECUs) 

may be used for collecting GPS and 

driving behaviour data. 

 E-CORRIDOR-Tst-

S2C-01 

 E-CORRIDOR-Tst-

S2C-02 
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4.2.5. Application to Pilots 

Pilot S2C, ISAC 

Reference to Use cases 

or User stories 
 S2C-US-9: Driving behavior recognition  

 ISAC-US-01: Public cyber-threat information collection 

Brief description of the 

Use cases or User 

stories 

The above use cases refer to the analysis of the driving behavior. The 

same input data can be collected for identifying potential cyber-threat 

information 

Match of the proposed 

approach/technology 

with the USs/UCs 

The adoption of this analytics will allow the E-corridor framework to 

identify drivers according to their driving styles. 

 

4.2.6. Potential Synergies 

Synergies with other 

components - Work 

package and Task 

 T8.2 

Title/brief description 

of the task 

The above tasks refer to continuous behavioral authentication. 

Description of the 

potential synergy with 

risks and opportunities 

By using PSR it is possible to identify all drivers that are authorized to 

drive a target vehicle. In order to authorize a driver it is important to 

identify and consequently authenticate her. This can be done by 

enhancing the current version of PSR with some authentication method. 

Dependencies on other 

components 

Secure routine for driver identification (driver DNA) 
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5. Carbon Footprint Analytics – Task 7.4 
Task 7.4 Carbon Footprint Analytics aims at designing analytics for inferring by approximation, 

with limited knowledge of all involved elements, the actual CO2 footprint in the multi-modal 

transport system. The accurate calculation of the carbon footprint of a process (e.g., a trip) 

requires a large set of precise information, which is difficult to collect. Thus, this task will 

provide analytics that can estimate the CO2 footprint according to information acquired in real 

time, such as the travel distance, driving style, fuel quality, etc. These analytics will be 

performed in a privacy-preserving manner, using anonymized or generalized data, or 

differential privacy. 

 

5.1. CO2 analytics [E-CORRIDOR-IAI-CFA] 

The Carbon Footprint Analytics will provide a tool and accompanying algorithms to estimate 

the CO2 footprint of trips, according to limited information acquired in real-time, such as the 

travel distance, driving style, fuel quality, etc. The carbon footprint information of trips will 

then be returned to end-users (such as passenger and transport operators), to allow them to know 

the carbon emissions of using or running multi-modal transport service.   

In this section, we will first review the state-of-the-art CO2 analytics technologies and tools, 

and then propose E-CORRIDOR’s approach to designing this data analytic tool and applying it 

to E-CORRIDOR pilots. 

 

5.1.1. State of the Art 

Transport represents almost a quarter of Europe's greenhouse gas (GHG) emissions and is the 

main cause of air pollution in cities. Within the transport sector, road transport is by far the 

biggest emitter accounting for more than 70% of all GHG emissions from transport in 2014 

[137]. 

According to the research led by John Mulrow [138], most people recognize the significant 

influence of transportation activities on their carbon footprint calculation, and they are generally 

more curious about the carbon footprint generated by transportation (than home energy, food, 

water, and others). Designing carbon footprint calculators for transportation contributes to 

better estimation of the carbon emission originated from transportation-related activities and 

realization of the EU’s targets for reducing greenhouse gas (GHG). This research also provides 

a detailed comparison among 31 popular carbon footprint calculators provided by government 

organizations, non-profit organization and private companies. However, all these calculators 

adopt survey-based methods to acquire relevant inputs from users, and none of them supports 

automatic CO2 calculation or inference, when given the details of a trip. Also, few of them 

support multi-modal transport. 

Another trend that we have noticed is that more trip planning tools are supporting carbon 

footprint estimation, such as TripGo [102] by SKEDGO and the Green Driving Tool [139] by 

Joint Research Centre (JRC). CO2 analytics seems a natural match with trip planners, since 

providing CO2 estimation before a trip will affect the travel choice, and trip planners can 

provide important data such as travel distance, transport modes and geographical information. 

Furthermore, one important feature we have learned from the Green Driving Tool is the concept 

of Citizen Science, where people can provide fuel consumption and routes to help researchers 

to build more accurate models to analyze CO2 emissions. The idea of Citizen Science is 

somehow similar to the information sharing concept adopted by E-CORRIDOR, and by using 
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advanced data analytics techniques, great insights and more comprehensive models can be 

obtained. 

 

5.1.2. Proposed Approach\Technology 

Within this task, a carbon footprint calculator will be developed to allow users to estimate the 

carbon footprints of their multi-modal trips. Users need to provide the travel distance, transport 

mode and vehicle type to get the CO2 estimation. It should be noted that as the research and 

development work evolves, more complicated inputs (such as driving style analyzed in E-

CORRIDOR-IAI-SR see Section 2.1) may be needed to get a more accurate calculation. 

The following figure shows the architecture of the CO2 calculator for multi-modal trips. First, 

the CO2 Calculation API is a RESTful web service that responds to CO2 calculation requests 

with returned CO2 information in a JSON representation. Second, CO2 Calculation Core will 

contain the logic and algorithms for CO2 calculation. Most of the research and development 

effort will be spent on optimizing the CO2 calculation algorithms that suit the E-CORRIDOR 

use cases. Last, a Carbon Profile Database will be linked with the Core to check the carbon 

profiles of different transport modes and vehicle types. A database can avoid hard-coded CO2 

values and provide high expansibility and maintainability.  

 

 

Figure 14. CO2 analytics architecture. 

 

5.1.3. Expected Data Format  

In order to estimate the carbon footprint of trips, an end-user needs to provide some essential 

information such as distance, transport mode, and vehicle type. There is no standardized format 

for use due to the various features and functionalities of different carbon footprint analytics 

tools. Thus, the data needed for CO2 calculation should be contained in a proprietary format to 

be discussed with the smart cities and car-sharing (S2C) pilot partners, Clem’ and Pildo. Also, 

the data format will evolve with the development of the Carbon Footprint Analytics and be 

expanded to allow different levels of accuracy and data inputs. Initially, the CO2 Analytics tool 

needs distance, transport mode, and vehicle type for a basic CO2 calculation. 
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5.1.4. Platform Requirements 

ID Priority Requirement In order to fulfil 

Platform 

Requirement(s)  

E-

CORRIDOR-

IAI-CFA-001 

SHOULD The carbon footprint analytics tool 

should be able to pull data (such as 

carbon profiles of different vehicles) 

from external sources, with 

specified polling intervals. 

 E-CORRIDOR-

DS-20 

 E-CORRIDOR-

Tst-Int-S2C-02 

 

 

5.1.5. Application to Pilots 

Pilot Car-Sharing pilot 

Reference to Use cases 

or User stories 

• S2C-US-05: Trip planning and carbon footprint. 

• S2C-UC-03: Trip planning and carbon footprint analysis  

Brief description of the 

Use cases or User 

stories 

The above use case/user story refers to a scenario where travelers plan 

to calculate optimized routes for their multimodal trips according to 

their criteria and check relevant trip information and calculate and track 

carbon footprint info of their trip both before and after the trips.  

Match of the proposed 

approach/technology 

with the USs/UCs 

The proposed technology can estimate the carbon footprint of multi-

modal trips, when given the distance travelled, transport types, and 

vehicle types. The CO2 calculator can be integrated with trip planners 

to automatically calculate the carbon footprint or run in a standalone 

mode by exposing APIs to end-users. 
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5.1.6. Potential Synergies 

Synergies with other 

components - Work 

package and Task 

 Task 7.2 Privacy preserving itinerary planning 

 Task 7.1 Data analytics for driver identification 

Title/brief description 

of the task 

Task 7.2 is dedicated at the design, implementation and maturation of 

analytics to infer or predict the best multi-modal travel itineraries for 

end-users. 

Task 7.1 gathers and processes a variety of data produced from cars 

(OBD readings, GPS, etc.), transport entities, users, infrastructure’s 

detectors, sensors, and even social media using the novel analytics E-

CORRIDOR platform. This task leverages advance artificial 

intelligence algorithms to allow driver identification, authentication 

and possibly driving style. 

Description of the 

potential synergy with 

risks and opportunities 

Task 7.2 E-CORRIDOR-IAI-MMIP: The analysis of carbon footprint 

relies greatly on the trip information. By designing more accurate CO2 

estimation algorithms within T7.4 and integrating these algorithms with 

our trip planning tool, we can better present the carbon footprint 

information of potential trips to travelers and allow them to choose 

more carbon-free transport solutions. 

Task 7.1 E-CORRIDOR-IAI-SR: Driving style (if available) could be 

considered as another factor affecting the CO2 calculating results, and 

Task 7.4 Carbon Footprint Analytics will conduct research to include 

these kinds of factors into the carbon footprint calculation and provide 

more accurate results. 

Dependencies on other 

components 

The itinerary planning tool in Task 7.2 
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6. Intrusion Detection Technologies – Task 7.5 
This task will provide security analytics utilizing machine learning for anomaly-based intrusion 

detection. In particular, the following important capabilities will be provided for multi-modal 

transport applications: behavior conformance tracking; security compliance tracking, and 

prediction of critical situations. Behavior conformance tracking is the capability to detect 

deviations of observed events from expected events with respect to the multi-modal transport 

application model and the current state. Security compliance tracking is the capability to apply 

a security model at runtime in order to identify violations of security requirements. Prediction 

of critical situations is the capability to predict violations of security requirements in the near 

future. More precisely, if a state transition leads to a critical state in a security monitor within 

the behavior prediction scope then a so-called predictive alert will be raised. We provide a 

multi-dimensional behavioral detection engine model that includes operational, system, and 

network data to detect advanced correlated attacks. The developed behavioral detection engine 

relates states of different transport systems so that attacks can be identified with higher 

confidence level. The proposed approach adapts relations in order to capture the nature of 

attacks. Moreover, Advance Persistent Threats can be easily detected with this learning 

approach. 

In the following, we describe the requirements and architecture for the components developed 

in this task, in particular with respect to intrusion prevention and detection systems. 

  

6.1. Automotive Intrusion Detection [E-CORRIDOR-IAI-CANIDS] 

In this subsection, we will describe the E-CORRIDOR requirements and architecture for the 

specific components to be used for the intrusion detection with data from vehicular networks. 

In the past, cars could only be tampered if someone had direct physical access. With connected 

cars, however, we are now in an era where the technology exists for attackers to remotely target 

millions of vehicles simultaneously. Protecting connected vehicles will require holistic 

approaches to design, implement, and respond when the unexpected does happen. The attack 

surface of a modern car consists mostly of networked components and physical access to the 

internal communication bus systems. These channels could be used to inject and transmit 

adversarial messages, e.g., over the controller area network (CAN), or Automotive Ethernet, or 

other external interfaces, to an electronic control unit (ECU). In the future generation of 

connected cars and multi-modal transport systems in general, new attack vectors arise due to 

the increasing automation of vehicular functions. A potential attack scenario would be IP 

network attack to get unauthorized access to safety-related advanced driver-assistance systems 

(ADAS) controls of a vehicle. Those attacks can produce direct and controllable functional loss 

or impact on functional safety, which makes it one of the most prominent threats in cyber 

security. 

 

6.1.1. State of the Art 

Despite the trend to use Automotive Ethernet in recent in-vehicle architectures, CAN bus is still 

in use and can be utilized to attack modern vehicles [140]. Research on vehicular IDS has also 

focused almost exclusively on CAN traffic. The CAN intrusion detection methods can be sorted 

in four categories: 

1) Detecting specification violations.  

2) Detecting ECU impersonating attacks  

3) Detecting packet insertions. 
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4) Detecting sequence context anomalies.  

With respect to category 1 (specification violations), [141] describe a set of network-based 

detection sensors, which allow the recognition of anomalies occurring inside the vehicular 

network. These are characterized by two categories, namely specification-based sensors and 

semantic-based sensors (see Table 2). 

 

Table 2 List of network-based detection sensors 

Sensor Description 

Formality Correct message size, header and field size, 

field delimiters, checksum, etc. 

Location Message is allowed with respect to dedicated 

bus system. 

Range Compliance of payload in terms of data 

range. 

Frequency Timing behavior of messages is approved. 

Correlation Correlation of messages on different bus 

systems adheres to specification. 

Protocol Specification Correct order, start-time, etc. of 

internal challenge-response protocols. 

Plausibility Content of message payload is plausible, no 

infeasible correlation with previous values. 

Consistency Data from redundant sources is consistent. 

  

[142] proposes specific checks, e.g. for formality, protocol and data range. [143] describes 

among others a specific frequency sensor. [144] describes a language-based intrusion detection 

approach which could be seen as an extension of the protocol sensor by adding the specification 

of the state-machines of the participants to the protocol checks. [145] describes specific 

semantic technologies that could be used for plausibility and consistency sensors.  

These methods cannot detect attacks that act within the specified ranges but they have the 

advantage of avoiding false positives, therefore industrial products also often use this kind of 

rule-based IDS (e.g. https://www.escrypt.com/en/products/cycurids). 

With respect to category 2 (ECU impersonation), the standardized automotive open system 

architecture (AUTOSAR) specified a module for secure onboard communication (SecOC) to 

check the authenticity of protocol data units. However, due to the limited frame size of 8 byte 

in classical CAN, SecOC is of limited use on classical CAN bus [146]. As a result of this, on 

the not yet adopted authentication of ECUs, it is possible to launch impersonation attacks, where 

one ECU – which is already controlled by an attacker – sends messages that utilize an ID of 

another ECU. Most current research approaches on the detection of such ECU impersonating 

attacks use physical fingerprinting by voltage or timing analysis with specific hardware [147] 

[148].  

 

With respect to category 3 (packet insertions), where malicious packages are inserted outside 

their usual frequency [149] implemented a method using One-Class Support Vector Machines 

https://www.escrypt.com/en/products/cycurids
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(OCSVM) and [150] proposed a lightweight intrusion detection system based on small time 

differences, while [151] utilize LSTM. 

With respect to category 4 (sequence context anomalies), in case the attacker acts within the 

given specifications and does not attract attention by obvious frequency manipulation, the state-

of-art methods comprise OCSVM [152], neural networks [153], hidden Markov models [154] 

[145], process mining [155] or time series analysis [156], Hamming distance between payloads 

of two consecutive messages with same CAN ID [157], transition matrix [158] for valid ID 

sequences, and characteristic functions [159] focused on the validity of payload values and 

changes in said values. 

Comparisons of different Machine Learning (ML) algorithms for intrusion detection within 

CAN data are given in [160] and [161]. LSTM, Gated Recurrent Units (GRU) and Markov 

models are used in [160], while OCSVM, SVM, sequential neural networks and LSTM are used 

in [161]. Surveys on intrusion detection systems for in-vehicle networks are provided in [162] 

and [163]. 

Because the content structure (see Figure 15) and semantics of the CAN payload is usually kept 

secret, most methods mentioned above view the payload as unstructured sequence of 8 bytes 

[156] or 64 bits.  

 

 

Figure 15 Structure of the CAN message 

 

6.1.2. Proposed Approach/Technology 

We now describe the parts of the E-CORRIDOR analytics architecture (see Figure 16) to be 

used for the intrusion detection in vehicular networks. The proposed components comprise the 

following functionalities: 

 Classification at edge (in-vehicle) 

 Anomaly reporting (in-vehicle) 

 Classification at back-end (E-CORRIDOR platform) 

 Anomaly reporting (edge to back-end) 

 Model creation (learning in back-end) 

 Model deployment (transfer model back-end to edge) 

 Continuous model improvement 
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Figure 16 The Automotive IDS component in the analytics toolbox of the IAI 

 

The basis of the automotive IDS available in the analytics toolbox will be constituted by a novel 

model-based approach for predictive security analysis at runtime. It is based on the Predictive 

Security Analyzer (PSA) developed in the FP7 project MASSIF. The PSA observes the 

operation of a managed system by analyzing its events. For the application in the E-

CORRIDOR project, several enhancements and adaptations will be implemented, in particular 

by taking into account the needs of the security services in multimodal transport. 

For example, the accuracy of the payload structure model in CAN bus data heavily influences 

the accuracy of anomaly detection models. Therefore we evaluate this influence with respect to 

the E-CORRIDOR sensor value structure on the results of different intrusion detection methods. 

We analyze if an improved alignment is helpful to detect anomalies introduced by complex, 

hidden intrusions. 

In order to cover conceptually different modeling and reasoning techniques, we adapted an 

artificial neural network approach as well as a characteristic functions based intrusion detection 

approach to utilize such message streams on the CAN bus. For this we developed a set of test 

vectors based on log files of a vehicle enriched by different intrusions based on real-life 

scenarios. We have injected simulations of intrusions which mask certain sensor values within 

the respective messages. The effectiveness of the developed methods has been demonstrated in 

various experiments [164]. 

 

6.1.3. Data Format Requirement  

To reliably evaluate different automotive intrusion detection mechanisms, we utilize a 

multitude of public CAN bus datasets, such as [165] and [166], as well as our own dataset [159]. 

In order to successfully test a dataset, several requirements must be met. For one, we require 

information on which ECU within the vehicle is responsible for sending the data on the bus, 
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this is usually communicated through its ID and identification of the respective bus. 

Additionally, the exact timing of the messages must have been recorded along with the 

complete payload of the message, as well as the respective length of the payload. To improve 

classification, we also utilize additional information of the vehicles’ bus system, for example, 

the exact payload structure or list of valid IDs on the bus. All public datasets used for evaluation 

and testing of the automotive intrusion detection approaches contain previously recorded or 

introduced intrusion messages for several different attack scenarios. To prevent 

misclassifications or other inaccuracies, all attacks and their respective introduced messages 

must be tagged in some way. Either complete metadata on the intrusion must be provided, 

where the exact beginning and ending of the intrusion as well as the structure of the introduced 

messages is described or the individual messages must be labelled, to mark intrusion messages 

individually. There is no requirement on the actual structure of the dataset other than those 

previously mentioned. To evaluate our approaches, we can extract the required information 

from any kind of log format provided, if the information is present. In Appendix A.2.1 

Examples of CAN bus Datasets we show excerpts of different public CAN bus data sets and 

how the required information is logged there. 

After the classification of messages and the potential detection of an anomaly within the 

vehicles data, the results need to be distributed to different components of the E-CORRIDOR 

system for visualization or further processing. For this we have decided to use the Structured 

Threat Information eXpression (STIX) (cf. https://oasis-open.github.io/cti-documentation/) as 

the intrusion reporting format within the E-CORRIDOR platform. In Appendix A.2.2 Examples 

of Alert Indicators in STIX Data Format we show by examples how alert information can be 

represented in STIX format.  
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6.1.4. Platform Requirements 

ID Priority Requirement In order to fulfil 

Platform 

Requirement(s)  

E-

CORRIDOR-

IAI-CANIDS-

01 

MUST Emulate a working ECU inside the 

in-vehicle network to generate, 

collect, share and analyze CAN bus 

data for S2C-UC-06, ISAC-UC-02, 

ISAC-UC-07. 

 E-CORRIDOR-Tst-

ISAC-01 

 E-CORRIDOR 

Ope-05 

E-

CORRIDOR-

IAI-CANIDS-

02 

SHOULD Support device that is compatible 

with OBD (or CAN BUS) for 

monitoring and sending GPS and 

driving behavior data. 

 E-CORRIDOR-Tst-

S2C-02 

E-

CORRIDOR-

IAI-CANIDS-

03 

SHOULD Support Pilot ISAC Test Bed & 

Production Requirements 
 E-CORRIDOR-Tst-

ISAC-01,  

 E-CORRIDOR-Tst-

ISAC-02,  

 E-CORRIDOR-Tst-

ISAC-03,  

 E-CORRIDOR-Tst-

ISAC-04 

E-

CORRIDOR-

IAI-CANIDS-

04 

SHOULD Support an intrusion protection 

system able to authenticate the ECU 

in an intra-vehicle network when it 

aims at sending cross partition CAN 

frame 

 E-CORRIDOR-Tst-

Int-ISAC-02 

 

E-

CORRIDOR-

IAI-CANIDS-

05 

MUST CAN IDS must work at the edge 
 E-CORRIDOR-

Ope-02 edge 

 

E-

CORRIDOR-

IAI-CANIDS-

06 

COULD CAN IDS could support deployment  

in cloud and edge or collaboratively 

in the cloud 

 E-CORRIDOR-

Ope-01 (both) 

 E-CORRIDOR-

Ope_03 

(collaboratively in 

the cloud) 

 

E-

CORRIDOR-

IAI-CANIDS-

07 

SHOULD CAN IDS should support intrusion 

detection reporting E-CORRIDOR 

cloud by means required by 

respective use cases. 

 E-CORRIDOR-DA-

06 

 E-CORRIDOR-DS-

19 (push) 
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6.1.5. Application to Pilots 

Pilot  S2C and ISAC pilots 

Reference to Use cases 

or User stories 
 S2C-US-06 Cybersecurity notifications: communicate about threats 

 ISAC-US-06 Automotive cyber-threat information analysis 

 ISAC-US-07 sharing automotive cyber-threat information analysis 

Brief description of the 

Use cases or User 

stories 

The above use cases refer to the automotive cyber-thread information 

analysis through intrusion detection mechanisms, as well as the sharing 

of automotive cyber-threat analysis results with different components 

of the E-CORRIDOR platform and thereby enabling the system to 

notify and communicate about threats. 

Match of the proposed 

approach/technology 

with the USs/UCs 

The proposed technology identifies anomalous behavior possibly 

related to attacks on the vehicle and reports them to the E-CORRIDOR 

platform. 

 

6.1.6. Potential Synergies   

Synergies with other 

components - Work 

package and Task 

 T7.1 Secure routing for driver identification – Driver DNA  

 T7.5 EARNEST CAN-IPS 

Title/brief description 

of the task 

Data Analytics for Driver and Passenger Identification in Task 7.1 

analyze sensor data to perform driver and passenger identification. 

Sensor data are collected from cars such as CAN bus messages. 

Machine learning algorithms that create models for driver and 

passenger used for identification could possibly use similar algorithms 

as CAN IDS. 

EARNEST is an Intrusion Protection System (IPS) to prevent 

unauthorized ECUs to send possible malicious CAN frames on the bus.  

Description of the 

potential synergy with 

risks and opportunities 

CAN IDS could support in particular the driver identification in Task 

7.1 because in-vehicle data on CAN bus could be exploited for 

behavioral and driving style analysis. 

CAN IDS can be used to trigger EARNEST CAN IPS developed in task 

7.5 by specific alerts. Thus, CAN IDS analytics can support and extend 

the protection of malicious activities within a vehicle.  

Dependencies on other 

components 

none 
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6.2. Fully Homomorphic Encryption-based intrusion detection [E-

CORRIDOR-IAI-FHEIDS] 

An Intrusion Detection System (IDS) is a software application that scans a network or a system 

and raises alerts in presence of anomalous, harmful or policy breaching activities. Any 

malicious or violation event is reported either to an administrator or collected centrally using a 

Security Information and Event Management (SIEM) system. A SIEM system integrates 

outputs from multiple sources and uses alarm filtering techniques to differentiate malicious 

activities from false (positive) alarms. We propose a Network IPS monitoring the connection 

with blacklisted IP addresses. Notably, all the stored IP addresses are in homomorphic 

encryption format in order to respect security and privacy constraints.  

6.2.1. State of the Art 

Please refer to Section 4.1.1  

 

6.2.2. Proposed Approach/Technology 

In the E-CORRIDOR project and due to Pilots requirements, we propose FHE analytics services 

processing on two data types: 

 IPv4 addresses; 

 ASCII strings for checking spam with specific patterns 

We will implement different FHE analytics services which will allow the following operations: 

 Testing if two encrypted IPv4 addresses are equal or not; 

 Testing if an encrypted IPv4 belongs to a list of encrypted IPv4 addresses (e.g. to check 

if the IP is in a list of malicious IPs); 

 Testing if an encrypted pattern appears in encrypted text; 

 Testing if the maxlen first letters of an encrypted string belongs to a list of encrypted 

strings, where strings can have variable length and where maxlen is a parameter of 

integer type (e.g., to check if a hostname is in a list malicious hostname, if a username 

is in a list of sensitive accounts). 

 

The analytics operations will be performed with CEA’s FHE technologies. FHE computation 

services on (homomorphic) ciphertexts, including the FHE analytics services proposed above, 

can all be decomposed on the elementary operations of homomorphic additions and 

homomorphic multiplications over the input bits of data. 

Effectively, Homomorphic Computation enables an untrusted server to evaluate arithmetic 

circuits on ciphertexts without being able to decrypt inputs and outputs. In concrete terms, it is 

used to evaluate polynomials over encrypted bits. 

As a first illustrative example, we can consider a polynomial P(X,Y)=X+Y over integers and 

two integers 3 and 5. On clear data, the evaluation of the polynomial returns 8. In homomorphic 

cryptography, we manipulate encrypted data. By denoting with HE a homomorphic encryption 

function, in this case, we have two encryptions HE(3) and HE(5) of the integers. The result of 

the evaluation of P over these ciphertexts is HE(8). That is an encryption of the expected result. 

These polynomials can be multivariate and described with Boolean circuits. These circuits can 

be described by using two Booleans gates: AND gates (binary multiplication) and XOR (binary 

addition). On such a representation, there are two important parameters that have to be 
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minimized: (i) number of AND gates and (ii) circuit multiplicative depth i.e., the maximal 

number of AND gates between an input and an output of the circuit. 

As a second more complex illustrative example, we consider the polynomial 

Q(X,Y)=X^2*Y^2. We can evaluate this polynomial in different ways depending on operation 

order. A circuit permits to indicate the computation order. Let us take a first circuit representing 

how Q(X,Y) is computed: 

 

Figure 17: A Boolean circuit – un-optimized 

The left boxes represent the circuit inputs. The right box is the circuit output. With this 

representation, the multiplicative depth is the maximal number of arrows between an input and 

an output of the circuit. Here, it is 3. We can do better (that is minimising the multiplicative 

depth) by changing the order of computations: 

 

Figure 18: A Boolean circuit – optimised 

In this manner, the multiplicative depth is minimized to 2. This permits to decrease time and 

memory requirements. 

Ideally, the multiplicative depth should be less than 20. Time and memory needs mainly depend 

on security level and multiplicative depth. There is no standardised homomorphic 

cryptosystem. Earlier, most of the homomorphic cryptosystem proposed only one 

homomorphic operation (addition or multiplication for instance) and thus less applications were 

proposed. Note that a homomorphic scheme is probabilistic, so an attacker which has only 

access to ciphertexts could decrypt it if they have secret key.  

The “pattern searching” algorithm of our IDS receives in input a list of blacklisted IP addresses 

stored in a database in encrypted format. An IP address under analysis, represented as a vector 
of its encrypted octets, is subtracted to the addresses stored in the database. If the encrypted 

result is a zero vector then it means that the given address matches the one in the database. In 

practice, pattern searching uses several techniques to reduce the size of the output cypher-texts 

and improve performance. Such an optimization will constitute the effort for the next months 

of the project.  

6.2.3. Data Format Requirement  

CEA’s FHE technology tool needs constant data length as input, which requires a 

precomputation for certain data types. Indeed, IPv4 addresses satisfy this requirement because 

they are represented by 4 bytes, whereas strings do not and therefore their length is a parameter 

to consider. 
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Strings representations depend on: 

 Character encoding; 

 String size. 

In our implementation, character encoding is (extended) ASCII, where a character is 

represented with one byte. To address the non-constant string size issue, a solution is to encode 

the string with zero padding and truncation. The encoded data is then stored as a fixed number 

of bytes (this number is an additional parameter to consider). 

Under those assumptions, the data representation becomes: 

 Each IPv4 is stored as 4 bytes; 

 Each ASCII character is stored as 1 byte; 

 Each ASCII string is stored as X bytes, where X is a parameter; 

We choose IPv4 rather than IPv6 addresses and ASCII text format rather than UTF-8 encoding, 

because they both differ in data representation size (they both use more bytes): in homomorphic 

cryptography, this parameter can have a significant impact on time and memory requirements. 

To sum up, the parameters in our FHE analytics are: 

 The input data (IPv4s, String text format); 

 Encoded data size (a constant integer for IPv4 addresses, an integer parameter for 

strings); 

 Number of data (the list size is a parameter). 

 

For example, if we would like to analyse the IP addresses in the Common Event Format (CEF) 

log file and check whether they are blacklisted, then the input of CEF log file would contain:  

2018-11-27 15:59:19.000 47.000 TCP 146.48.36.2:22  -> 116.31.116.6:21115      22   3973     1 

2018-11-27 16:00:03.000 0.000  TCP 146.48.36.2:43497 -> 185.156.177.129:59275  0   0     1 

2018-11-27 16:00:12.000 0.000  TCP 146.48.36.2:22 -> 117.33.114.6:45336         1  74     1 

2018-11-27 16:00:12.000 0.000  TCP 146.48.36.2:22 ->  119.37.236.1:44929      1   74     1 
 

After pre-processing for filtering only the destination IP address, the input file read by the FHE 

IDS components would be: 

1; 116.31.116.6 

2; 185.156.177.129 

3; 117.33.114.6 

4; 119.37.236.1 
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6.2.4. Platform Requirements 

ID Priority Requirement In order to fulfil 

Platform 

Requirement(s)  

E-

CORRIDOR-

IAI-FHEIDS-

01 

MUST Emulate a working ECU inside the 

in-vehicle network to generate, 

collect, share and analyze CTI, 

connection logs data for S2C-UC-

06, ISAC-UC-02, ISAC-UC-07. 

 E-CORRIDOR-

Tst-ISAC-01 

 E-CORRIDOR 

Ope-05 

 

E-

CORRIDOR-

IAI-FHEIDS-

02 

SHOULD Support device that is compatible 

with OBD (or CAN BUS) for 

monitoring and sending GPS and 

connection behavior data. 

 E-CORRIDOR-

Tst-S2C-02 

E-

CORRIDOR-

IAI-FHEIDS-

03 

SHOULD Support Pilot ISAC Test Bed & 

Production Requirements 
 E-CORRIDOR-

Tst-ISAC-01,  

 E-CORRIDOR-

Tst-ISAC-02,  

 E-CORRIDOR-

Tst-ISAC-03,  

 E-CORRIDOR-

Tst-ISAC-04 

E-

CORRIDOR-

IAI- FHEIDS -

04 

SHOULD Support an intrusion protection 

system able to identify IP in black 

list or spam content 

 E-CORRIDOR-

Tst-Int-ISAC-02 

 

E-

CORRIDOR-

IAI- FHEIDS -

05 

MUST FHE IPS must work at the edge 
 E-CORRIDOR-

Ope-02 edge 

 

E-

CORRIDOR-

IAI- FHEIDS -

06 

COULD FHE IPS analysis could support 

deployment in cloud and edge or 

collaboratively in the cloud 

 E-CORRIDOR-

Ope-01 (both) 

 E-CORRIDOR-

Ope_03 

(collaboratively 

in the cloud) 

 

E-

CORRIDOR-

IAI- FHEIDS -

07 

SHOULD FHE IPs should support intrusion 

detection reporting E-CORRIDOR 

cloud by means required by 

respective use cases. 

 E-CORRIDOR-

DA-06 

 E-CORRIDOR-

DS-19 (push) 
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6.2.5. Application to Pilots 

Pilot AT, S2C, ISAC 

Reference to Use cases 

or User stories 
 AT-US-04: Advanced Security Analytics Services  

 ISAC-US-03: ISAC-MMT cyber-threat information analysis 

 ISAC-US-04: ISAC-MMT cyber-threat notification 

 ISAC-US-07: sharing automotive cyber-threat information analysis 

 ISAC-US-06: Automotive cyber-threat information analysis 

 S2C-US-06 Cybersecurity notifications: communicate about threats 

 S2C-US-07 Secure sensitive data that would be shared from end to 

end 

Brief description of the 

Use cases or User 

stories 

The use cases involves collection and processing of cyber-security logs. 

Match of the proposed 

approach/technology 

with the USs/UCs 

The FHE-based IDS will process those logs to identify any blacklisted 

address attempting to connect to the internal network. Similarly, the 

component will be effective in identifying an infected machine 

unconsciously trying to connect to remote servers (e.g., a command and 

control server) if infected by a malware. 

6.2.6. Potential Synergies   

Synergies with other 

components - Work 

package and Task 

 T7.2 

 

Title/brief description 

of the task 

OpenAPI for FHE operations 

Description of the 

potential synergy with 

risks and opportunities 

Both the components are based on the same FHE engine but the 

different applications require special customizations and optimizations. 

Dependencies on other 

components 

None 

 

6.3. Intrusion Protection System – Earnest [E-CORRIDOR-IAI-CANIPS]  

Modern vehicles are composed by many micro-controllers called Electronic Control Units 

(ECUs) that are controlled by software. ECUs regulate all the functionalities of a vehicle, 

including many safety-critical functions (the steering and breaking) and other possible untrusted 

functionalities (the infotainment system).  

ECUs are physically connected to the vehicle network, and communicate one other through 

specialized protocols, such as the Controller Area Network (CAN) bus protocol. However, the 
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CAN protocol is not secure by design. The lack of mechanisms to guarantee security of on-

board communication in conjunction with network design choice may be cause of cyber-

attacks. One of the most famous example is the one of Miller and Valasek to a Jeep Cherokee 

in 2015 [167] in which the two researchers remotely drove the vehicle. In 2018, the Keen 

Security Lab presented a set of vulnerabilities of BMW cars that make them prone to remote 

access [168]. In particular, the researchers injected Unified Diagnostic Services (UDS) frames 

into the CAN network bypassing the central gateway. Another example is a recent attack on a 

Toyota Lexus, introduced in March 2020 by the Keen Security Lab [169].  

In this interesting panorama, we propose EARNEST as an Intrusion Protection System (IPS) to 

prevent unauthorized ECU to send possible malicious CAN frames on the bus. The application 

scenario we consider consists of an active attacker who gets access to the CAN bus network, 

either exploiting a local or remote connection. The intra-vehicle network is designed in such a 

way that two or more partitions of the network are put in place to isolate at least the safety- 

critical functionalities to the untrusted ones. Such an attacker may alter the behavior of a vehicle 

by obtaining access to the vehicle network, for instance, by compromising an ECU. Gaining 

the control of the ECU, the attacker could be able to inject customized frames (Fuzzing attack), 

or to perform Replay attacks. EARNEST prevents both of them. Whenever an ECU sends a 

frame from a partition to another (cross- partition frame), EARNEST halts the frame and 

challenges the ECU. The challenge consists in performing a simple operation on agreed 

dynamically generated frame. If the challenge successfully ends the frame is forwarded, 

otherwise, discarded.  

6.3.1. State of the Art 

In academic literature, several solutions were proposed to cope with security issues on the CAN 

bus. Such solutions can be classified in two main categories: add security to CAN bus, e.g., 

[170] or Intrusion Detection/Protection Systems e.g., [171]. Here, we discuss EARNEST with 

existing results about intrusion detection and protection mechanisms based on anomaly 

detection on CAN communication.  

An intrusion detection and prevention mechanism was proposed by Miller and Valasek in [167]. 

It consists in an anomaly detector device that can be plugged into the vehicles OBDII port. The 

systems acts by checking anomaly on the communication bus traffic pattern. Once anomalies 

were identified, they disabled the CAN.  

Also the IDS presented in [172] is based on anomaly detection. In particular, it is based on 

detecting an anomaly in the frequency of the messages that are sent. Once the anomaly is 

detected, an alert is sent to the infotainment system to inform the driver that a possible intrusion 

occurred.  

In [157], the author proposes an anomaly detection mechanism based on the Hamming Distance 

[173] between consecutive payloads of CAN frames with the same ID. They do not consider 

the whole payload but only the observed distance. They provide also performances related to 

the efficiency of the approach in the detection of Replay and Fuzzing attack. In [158], the same 

authors present an Intrusion Detection mechanism based on machine learning. The proposed 

algorithm is able to build a model of the normal behavior of a CAN network based on the 

recurring patterns within the sequence of message IDs observed in the CAN Bus. In this way 

the proposed IDS (Intrusion Detection System) is able to address Replay attacks, and the bad 

or mixed injection of messages on the bus.  
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For the best of our knowledge, in literature Intrusion Protection Systems on CAN bus are not 

DBC-challenge based. EARNEST provides a strategy to protect the CAN bus network as soon 

as a possible attack is in action. This is the main novelty of EARNEST: establishing if the frame 

content are generated by an attacker using a challenge that allows EARNEST to prove the licit 

ECU behavior. In fact, by using the challenge mechanism, in which we assume that the DBC 

is employed as the secret shared among ECU and EARNEST, our approach is able to cope with 

Replay and Fuzzing attacks.  

6.3.2. Proposed Approach/Technology 

Seen the continuous evolution that the automotive field is facing, without considering a specific 

vehicle network, we focuses on the last version of in-vehicle network where partitions are 

present. In this scenario, the diagnostic socket, such as the OBDII [174] port, is also considered 

as separate partition connected to the others through a central gateway (CGW) where 

EARNEST is installed. The goal of EARNEST is to monitor those CAN frames, named cross-

partition frames that are generated from a partition and addressed to other ones. We take also 

into account attacks that may come from the diagnostic bus. A common replay attack that can 

be executed here is represented by the sniffing of diagnostic frames that were created for 

instance by a diagnostic tool. Those frames can be easily replicated by any device capable to 

inject CAN frames into the bus. Due to the lack of any security mechanisms, e.g., packet 

authentication or frame freshness, the addressed ECUs will receive the frames and execute the 

corresponding actions.  

Considering the above cases, EARNEST aims at blocking attacks by verifying the sender 

authenticity by means of a challenge method. In particular, EARNEST’s goal is to stop any 

kind of replay and fuzzing attack that may be generated by ECUs when the frames are cross-

partition ones. The security of EARNEST is based on the following points: 

 DBC enables ECUs of a specific vehicle to correctly generate and interpret messages’ 

payload and translate them into signals that carry out the expected functionality. DBC 

is proprietary of OEM and it can be considered as a long-term secret only known by 

EARNEST and legitimate ECUs.  

 The challenge set represents the type of challenges that EARNEST will ask the ECU 

that is trying to send a cross-partition frame.  

 The encoding generation method defines how frames, needed for the challenge, must be 

generated by the ECU that sent a cross-partition frame.  

EARNEST adopts a challenge-based approach that starts once an ECU sends a cross-partition 

frame. EARNEST challenges the ECU asking to resolve a challenge as part of the handshake 

protocol. The ECU has to solve the challenge and sends back the correct answer to EARNEST. 

The goal is twofold: i) it allows the authentication of the sender ECU, since only legitimate 

ECUs knows the DBC, the set of challenges, the encoding method, and ii) the broadcast of the 

original frame to a cross-partition that may come from untrusted zone. In case of incorrect 

answer, the frame is discarded.  

6.3.3. Data Format Requirement  

EARNEST works using the CAN bus protocols. ECUs that generate cross-partition frames are 

challenged by EARNEST and failed challenges are reported in STIX format. Examples of STIX 
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objects generated by EARNEST are reported, for the interested reader, in Appendix A.2.3 

Examples of EARNEST Reports in STIX Data Format.  

6.3.4. Platform Requirements 

ID Priority Requirement In order to fulfil 

Platform 

Requirement(s)  

E-

CORRIDOR-

IAI-CANIPS-

01 

MUST Emulate a working ECU inside the 

in-vehicle network to generate, 

collect, share and analyze CAN bus 

data for S2C-UC-06, ISAC-UC-02, 

ISAC-UC-07. 

 E-CORRIDOR-Tst-

ISAC-01 

 E-CORRIDOR Ope-

05 

 

E-

CORRIDOR-

IAI-CANIPS-

02 

SHOULD Support device that is compatible 

with OBD (or CAN BUS) for 

monitoring and sending GPS and 

driving behavior data. 

 E-CORRIDOR-Tst-

S2C-02 

E-

CORRIDOR-

IAI-CANIPS-

03 

SHOULD Support Pilot ISAC Test Bed & 

Production Requirements 
 E-CORRIDOR-Tst-

ISAC-01,  

 E-CORRIDOR-Tst-

ISAC-02,  

 E-CORRIDOR-Tst-

ISAC-03,  

 E-CORRIDOR-Tst-

ISAC-04 

E-

CORRIDOR-

IAI-CANIPS-

04 

SHOULD Support an intrusion protection 

system able to authenticate the ECU 

in an intra-vehicle network when it 

aims at sending cross partition CAN 

frame 

 E-CORRIDOR-Tst-

Int-ISAC-02 

 

E-

CORRIDOR-

IAI-CANIPS-

05 

MUST CAN IPS must work at the edge 
 E-CORRIDOR-

Ope-02 edge 

 

E-

CORRIDOR-

IAI-CANIPS-

06 

COULD CAN IPS could support deployment 

in cloud and edge or collaboratively 

in the cloud 

 E-CORRIDOR-Ope-

01 (both) 

 E-CORRIDOR-

Ope_03 

(collaboratively in 

the cloud) 

E-

CORRIDOR-

IAI-CANIPS-

07 

SHOULD CAN IPS should support intrusion 

detection reporting E-CORRIDOR 

cloud by means required by 

respective use cases. 

 E-CORRIDOR-DA-

06 

 E-CORRIDOR-DS-

19 (push) 
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6.3.5. Application to Pilots 

Pilot ISAC and S2C 

Reference to Use cases 

or User stories 
 S2C-UC-06: Security analytics: Notifications and threat/attack 

management 

 ISAC-US-01: Public cyber-threat information collection  

 ISAC-US-02: Private transportation sector data collection  

Brief description of the 

Use cases or User 

stories 

The above use cases refer to the collection of data and the elaboration 

of such data in a privacy preserving way 

Match of the proposed 

approach/technology 

with the USs/UCs 

This analytics will help the stakeholders to discover and report 

malicious activities related to in-vehicle protocol network such as the 

CAN bus protocol. 

 

6.3.6. Potential Synergies 

 

Synergies with other 

components - Work 

package and Task 

 T7.5 Automotive Intrusion Detection (CAN bus IDS) 

Title/brief description 

of the task 

The above tasks refer to automotive intrusion detection for  

Description of the 

potential synergy with 

risks and opportunities 

This analytics can support and extend the protection of malicious 

activities within a vehicle. This will be done in collaboration with the 

analytics introduced in Section 6.1. 

Dependencies on other 

components 

Automotive Intrusion Detection  
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7. Pilot specific analytics 
The ISAC offers pilot-specific analytics based on the data gathered from public sources 

(security databases, online information) and the results produced by the security analytics 

provided by the other pilots. The analytics toolbox contained in the IAI component instantiated 

in the ISAC offers two types of analytics. The cyber data label assignment and the cyber data 

visualization tool. Both of them are integrated into the ISAC in order to extract high-level 

correlation between data collected and make it possible an intuitive visualization of the 

aggregation. Figure 19 shows the list of analytics contained in the IAI component of the ISAC. 

 

 

Figure 19 Pilot-specific analytics of the ISAC pilot 

 

7.1. Cyber data label assignment [E-CORRIDOR-IAI-CDLA] 

This analytics is exploited as the main element for the ISAC cyber-threat notification workflow. 

The ISAC is bound to collect a huge amount of information from various providers, and at the 

same time, it must redistribute the collected data timely to interested stakeholders. Selecting the 

right information to be sent to the right partner is of high importance. In fact, failing to provide 

information on a relevant vulnerability might increase the exposure time of the stakeholder to 

cyber-attacks. On the other hand, flooding the stakeholder with non-pertinent information 

increases the processing times and might result in a lowered attention to actual security threats.   

This analytics exploits text analysis using Natural Language Processing techniques and 

clustering to separate the received and computed information into separate topics to which the 

stakeholders can subscribe. In such a way, they will be automatically notified of the information 

that is relevant to them. 
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7.2. Cyber data visualization [E-CORRIDOR-IAI-CDV]  

The cyber data visualization analytics is a macro analytics used to present and speed up the 

information retrieval process. It is composed of a set of visualization analytics described in the 

following.  

 Security report: The security report is a set of statistical analyses extracted from the 

entire data collection available in the ISAC. It is regularly updated every time new cyber 

data is collected, and it is offered to the consumer to increase awareness in the cyber-

threat field. The list of the reporting data is described in Table 3. 

 

Table 3 Data in the security report of the ISAC 

Data Description 

Vulnerabilities Distribution of the number of CVE in the last 10 

years. 

Distribution of the degree of danger (CVSS) of all 

CVEs discovered. 

Distribution of the number of CVEs concerning 

the most used transportation 

software/hardware. 

Distribution of the degree of hazard of the CVE 

discovered in the current year. 

Latest CVE discovered 

Exploit Distribution of the number of exploit types in the 

last 10 years. 

Distribution of the number of exploits discovered 

in the last 10 years. 

Distribution of the number of exploits related to 

the most common transportation software. 

Latest exploits discovered 

 

 CVE search: This service offers the possibility of searching public domain information 

related to known security hardware and software vulnerabilities. This service provides 

a general description of the vulnerabilities reporting the publishing date, a short 

description, the CVE score, and the impact on integrity, confidentiality, and availability 

properties. The consumer can research the vulnerabilities specifying an interval time or 

a specific keyword.  Data exploited: Public vulnerability database collected from NVD 

(https://nvd.nist.gov). 

 Exploit search: This analytics offers the possibility of searching information about the 

exploits performing research by date or keyword. This analytics shows the date, 

description, and the specific platform on which the exploit is effective.  

Data exploited: Public exploits information collected from exploit-db 

(https://www.exploit-db.com/). 

https://nvd.nist.gov/
https://www.exploit-db.com/
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 Vulnerability attack correlation: This analysis allows the consumer to explore the 

interconnection between the vulnerabilities and attack patterns of specific known 

software or hardware. Additionally, the analytics provides recommendations for attacks 

and vulnerability mitigation.   

 Driver risk behavior map: The analytics exploits the data provided by the results of the 

Driver DNA analytics (E-CORRIDOR-IAI-SR). As explained in Section 2.1, the 

analytics provides the driver risk profile, e.g., more aggressive, speeding more 

frequently. Correlating these results with the geolocalization of the vehicles, the ISAC 

analytics can produce a map of the city reporting the average driver behavior in each 

road section. In such a way, it is possible to highlight the most dangerous section of the 

city and increase the drivers' awareness.  

 Automotive intrusion detection visualization: This analytics is based on the automotive 

intrusion detection system analysis results explained in Section 6.1 (E-CORRIDOR-

IAI-CANIDS). The produced result is the classification of the CAN bus messages and 

the potential detection of an anomaly within the vehicle's data. Such information shared 

by multiple vehicles with the ISAC is exploited to create a graphic visualization of the 

intrusion information, incident, related types, and incident classes of a single vehicle or 

create a visualization of the correlation of the incident detected in different vehicles. 
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8. Map of Data Analytics Techniques to Pilot Requirements  
All the analytics discussed in this document have been designed by taking into account 

requirements. This is remarked in Table 4 where, for the use cases of each of the three project 

pilots (as defined in D2.1, D3.1 and D4.1), the analytics contributing to their realization are 

specified. It is worth remarking that the analytics generally need the joint work with the other 

subsystems of the E-CORRIDOR framework (e.g., DLI, ISI or ASI). Where no analytics is 

involved in a use case the corresponding note is reported in the table. Pilots’ requirements are 

expressed along with their priority by following the MoSCoW (Must have, Should have, Could 

have, and Won’t have but would like) technique [175]. In case the “application to pilots” tables 

of the analytics components have been described with respect to user stories, the related use 

cases are reported here for the sake of homogeneity and conciseness.  

 

Table 4 Match of pilots' use cases with the analytics in the toolbox of the E-CORRIDOR framework 

Pilot Use 

Case ID 

Use Case Name Priority Analytics Identifier Name of the 

analytics 

A
ir

p
o
rt

- 
tr

ai
n
 (

A
T

) 

AT-UC-

01 

PRM Passenger 

Assistance and 

Authorization 

Must E-CORRIDOR-IAI-

PL 

 

E-CORRIDOR-IAI-

PBI 

 

E-CORRIDOR-IAI-

FR 

E-CORRIDOR-IAI-

AR 

Passenger location 

and flow 

optimization 

Passenger: 

Identification, 

Behavior, Context 

Face recognition – 

passenger 

authentication 

Activity recognition 

– passenger 

authentication 

AT-UC-

02 

Passenger and Baggage 

Contextual 

Identification 

Must E-CORRIDOR-IAI-

PBI 

 

E-CORRIDOR-IAI-

AR 

Passenger: 

Identification, 

Behavior, Context 

Activity recognition 

– passenger 

authentication 

AT-UC-

03 

Contactless Passenger 

Authentication and 

Authorization 

Must E-CORRIDOR-IAI-

PBI 

E-CORRIDOR-IAI-

GA 

E-CORRIDOR-IAI-

FR 

E-CORRIDOR-IAI-

AR 

Passenger: 

Identification, 

Behavior, Context 

Gait analysis – 

passenger 

authentication 

Activity recognition 

– passenger 

authentication 

AT-UC-

04 

Privacy-preserving 

Passenger Monitoring 

Should E-CORRIDOR-IAI-

PL 

 

 

Passenger location 

and flow 

optimization 
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E-CORRIDOR-IAI-

PBI 

 

E-CORRIDOR-IAI-

AR 

Passenger: 

Identification, 

Behavior, Context 

Activity recognition 

– passenger 

authentication 

AT-UC-

05 

Passenger Analysis 

Opt-In Opt-Out 

Must *  the DSA available in the DLI are 

expressed in a human intelligible format so 

that the passenger can accept the way data 

are shared in the ISI and used by other 

prosumers 

AT-UC-

06 

Single Sign-On 

Authentication 

Must E-CORRIDOR-IAI-

FR 

 

E-CORRIDOR-IAI-

AR 

Face recognition – 

passenger 

authentication 

Activity recognition 

– passenger 

authentication 

AT-UC-

07 

Multi-Modal Ticketing Could * the passenger’s information are stored in 

the eWallet located in the ISI and the 

federated authentication component of the 

ASI provides the required operations 

AT-UC-

08 

Service Access 

Through Bring Your 

Own Device 

Could E-CORRIODR-IAI-

GA 

Gait analysis – 

passenger 

authentication 

AT-UC-

09 

Sharing of Service 

Access Data 

Must E-CORRIDOR-IAI-

PL 

Passenger location 

and flow 

optimization 

AT-UC-

10 

Run Collective 

Security Analytics 

Could E-CORRIDOR-IAI-

FHEC 

 

E-CORRIDOR-IAI-

FHEIDS 

OpenAPI for Fully 

Homomoprhic 

Encryption 

Fully Homomorphic 

Encryption-based 

intrusion detection 

AT-UC-

11 

Notification of Service 

Disruption 

Could E-CORRIDOR-IAI-

PL 

Passenger location 

and flow 

optimization 

AT-UC-

12 

Passenger Flow 

Overview and 

Prediction 

Should E-CORRIDOR-IAI-

PL 

 

E-CORRIDOR-IAI-

PBI 

 

E-CORRIDOR-IAI-

AR 

Passenger location 

and flow 

optimization 

Passenger: 

Identification, 

Behavior, Context 

Activity recognition 

– passenger 

authentication 

AT-UC-

13 

Privacy-aware 

Behavioral 

Identification 

Should E-CORRIDOR-IAI-

PBI 

Passenger: 

Identification, 

Behavior, Context 
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E-CORRIDOR-IAI-

GA 

 

E-CORRIDOR-IAI-

AR 

Gait analysis – 

passenger 

authentication 

Activity recognition 

– passenger 

authentication 

AT-UC-

14 

Notification on PRM 

Passengers Location 

Could E-CORRIDOR-IAI-

PL 

Passenger location 

and flow 

optimization 

S
m

ar
t 

ci
ti

es
 a

n
d
 c

ar
 s

h
ar

in
g
 (

S
2
C

) 

S2C-

UC-01 

eWallet: Sign in/Log in Must E-CORRIDOR-IAI-

FHEC 

 

E-CORRIDOR-IAI-

FHEIDS 

OpenAPI for Fully 

Homomoprhic 

Encryption 

Fully Homomorphic 

Encryption-based 

intrusion detection 

S2C-

UC-02 

Socio-geographic 

dependent micro-

subsidies 

Must * this use case requires the presence of the 

passenger’s eWallet stored in ISI and the 

trusted service manager component of the 

ASI 

S2C-

UC-03 

Trip planning and 

carbon footprint 

analysis 

Could E-CORRIDOR-IAI-

MMIP 

E-CORRIDOR-IAI-

CFA 

CO2-aware Trip 

Planning 

Carbon footprint 

analysis 

S2C-

UC-04 

Sharing service data 

with Transport 

authority 

Could E-CORRIDOR-IAI-

FHEC 

 

OpenAPI for Fully 

Homomoprhic 

Encryption 

S2C-

UC-05 

Informing travelers 

about data usage and 

privacy 

Could E-CORRIDOR-IAI-

FHEC 

OpenAPI for Fully 

Homomoprhic 

Encryption 

S2C-

UC-06 

Security analytics: 

Notifications and 

threat/attack 

management 

Should E-CORRIDOR-IAI-

CANIDS 

 

E-CORRIDOR-IAI-

FHEC 

E-CORRIDOR-IAI-

FHEIDS 

Automotive 

Intrusion Detection 

OpenAPI for Fully 

Homomoprhic 

Encryption 

Fully Homomorphic 

Encryption-based 

intrusion detection 

S2C-

UC-07 

Security analytics: 

Privacy aware interest-

based service sharing 

Could E-CORRIDOR-IAI-

FHEC 

 

E-CORRIDOR-IAI-

FHEIDS 

OpenAPI for Fully 

Homomoprhic 

Encryption 

Fully Homomorphic 

Encryption-based 

intrusion detection 

S2C-

UC-08 

Driving behavior 

recognition 

Could E-CORRIDOR-IAI-

SR 

E-CORRIDOR-IAI-

MPCSR 

Driver DNA 

Private Secure 

Routine 
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M
u
lt

i-
M

o
d
al

 T
ra

n
sp

o
rt

at
io

n
 I

n
fo

rm
at

io
n
 S

h
ar

in
g
 a

n
d

 A
n

al
y

si
s 

C
en

te
r 

(I
S

A
C

) 
ISAC-

UC-01 

Public Cyber-Threat 

Information (CTI) data 

collection   

Must E-CORRIDOR-IAI-

SR 

E-CORRIDOR-IAI-

MPCSR 

E-CORRIDOR-IAI-

IPS 

E-CORRIDOR-IAI-

CDLA 

Driver DNA 

Private Secure 

Routine 

Intrusion Protection 

System – EARNEST 

Cyber data label 

assignment 

ISAC-

UC-02 

ISAC-MMT sharing 

data 

Must E-CORRIDOR-IAI-

CANIDS 

E-CORRIDOR-IAI-

MMIP 

E-CORRIDOR-IAI-

FHEC 

 

E-CORRIDOR-IAI-

CANID 

Automotive 

Intrusion Detection 

Multi-modal 

itinerary planning 

OpenAPI for Fully 

Homomoprhic 

Encryption 

Automotive 

Intrusion Detection 

ISAC-

UC-03 

Data sharing 

agreement 

Must E-CORRIDOR-IAI-

MMIP 

E-CORRIDOR-IAI-

MMIP: Multi-modal 

itinerary planning 

ISAC-

UC-04 

Run ISAC-MMT 

security analysis 

Must E-CORRIDOR-IAI-

FHEC 

 

E-CORRIDOR-IAI-

FHEIDS 

OpenAPI for Fully 

Homomoprhic 

Encryption  

Fully Homomorphic 

Encryption-based 

intrusion detection 

ISAC-

UC-05 

Cyber-threat 

notification 

Must E-CORRIDOR-IAI-

CANIDS 

E-CORRIDOR-IAI-

FHEIDS 

 

E-CORRIDOR-IAI-

CDV 

Automotive 

Intrusion Detection 

Fully Homomorphic 

Encryption-based 

intrusion detection 

Cyber data 

visualization 

ISAC-

UC-06 

Specific transportation 

sector data collection 

Must E-CORRIDOR-IAI-

IPS 

E-CORRIDOR-IAI-

CDV 

Intrusion Protection 

System – EARNEST 

Cyber data 

visualization 

ISAC-

UC-07 

Run local analytics Must E-CORRIDOR-IAI-

CANIDS 

Automotive 

Intrusion Detection 

ISAC-

UC-08 

CTI visualization Must E-CORRIDOR-IAI-

CDV 

Cyber data 

visualization 

 

As can be observed from the above table, the analytics proposed in the toolbox aims at satisfying 

the requirements expressed by the three project pilots as use cases and thus set the foundations 

for their further evaluation and maturation in the realistic environments proposed by the pilots, 

the development of products and their potential adoption.  
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9. Contributions to the E-CORRIDOR objectives 
The E-CORRIDOR framework aims at providing a collaborative, privacy-aware and edge-

enabled platform for information sharing, data analysis and security services to the multi-modal 

transportation domain.  

This deliverable is oriented at describing the data analytics and security services offered by the 

framework according to pilots’ requirements and needs specified at M12. In particular, pilots 

have expressed very heterogeneous requirements with respect to data sources, available sensors, 

deployment models and system capabilities. On the other hand, it was possible to cluster their 

needs toward privacy-aware analytics for user identification and authentication, itinerary 

planning and cyber-security services for transportation entities. 

 

Among the project objectives described in the DoA of the E-CORRIDOR project, the analytics 

discussed in this deliverable contribute to the following ones (reported here for the sake of 

completeness): 

 Objective 2: E-CORRIDOR will define edge enabled data analytics and prediction 

services in a collaborative, distributed and confidential way; 

 Objective 3: E-CORRIDOR will define a secure and robust platform in holistic manner 

to keep the communication platform safe from cyber-attacks and ensure service 

continuity; 

 Objective 4: E-CORRIDOR will improve, mature and integrate several existing tools 

provided by E-CORRIDOR partners and will tailor those to the specific needs of the E-

CORRIDOR platform and Pilots; 

 Objective 5: E-CORRIDOR will provide mechanisms for seamless access to 

multimodal transport; 

 Objective 6: the framework and the services developed will be used to deliver three pilot 

products; 

 

Stakeholders in the multi-modal transportation domains have the possibility to collaboratively 

share data in a privacy preserving manner thanks to the ISI and DLI (Data sharing agreement 

lifecycle infrastructure) subsystems of the E-CORRIDOR framework. Such data bundles 

contain highly sensitive (e.g., passport or driving license, biometrics) and confidential 

information (e.g., pertaining to the functioning of the transportation infrastructure or the cars). 

These can be analyzed with the privacy-aware analytics provided in the analytics toolbox in a 

collaborative fashion, thanks to the edge capabilities of the platform. The DSA specified in the 

DLI are able to control the access to the data and even to the set of analytics deemed trusted by 

the data producer. These capabilities of the E-CORRIDOR framework are then able to satisfy 

performance and regulatory constraints requested by the pilots, other than contributing to the 

Objective 2 of the E-CORRIDOR project.  

 

In the E-CORRIDOR framework the ASI subsystem is in charge of providing advanced trusted 

services, authentication and authorization capabilities based also on multi-biometric, multi-

factor and behavioral analysis to ensure security for the platform and its users. The analytics 

presented here other than providing some identity, privacy and security services (see 

components described in Sections 2, 4 and 6) are, in some cases, also used as building blocks 

for more complex cyber-security services performed by the ASI. Synergies presented along 
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each component highlights the latter possibility. Moreover, the intrusion prevention and 

detection services (see Section 6) directly provide a mean to strengthen the cyber-security and 

increase the robustness of the pilot infrastructure in line with the goals expressed by the 

Objective 3. 

 

As already remarked, all the analytics in the toolbox have been designed and tailored to the 

needs of the project pilots, and are actually able to cover a good spectrum of their use cases (see 

Section 8). The pluggable and privacy-aware capabilities of the toolbox will ensure that further 

requirements, defined in the next months of the project and even after its completion, can be 

easily considered and integrated in the framework without any additional effort. Older 

components not originally compliant with the specifications of the IAI subsystem can be 

integrated in the legacy analytics engine. All this will ease the integration of existing and new 

tools in the E-CORRIDOR framework. Objective 4 is fulfilled by considering that analytics 

tools are also expected to improve and maturate (up to a TRL 6 or 7) thanks to the closer 

interaction with experts in the multi-modal transportation domain (represented by the project 

pilots) and their interest in evaluating the capabilities and features offered by the analytics to 

satisfy the described use cases.  

 

The goal of a seamless access to the multimodal transportation services expressed in the 

Objective 5 of the project is supported in particular by the IAI and ASI subsystems of the E-

CORRIDOR framework. In particular the IAI offers a set of passenger and driver identification 

and authentication capabilities targeting the peculiarity of the project pilots in terms of available 

sensor data, privacy requirements, and deployment and resource restrictions. The ASI will 

extend those services with behavioral authentication and authorization, trusted service manager. 

A frictionless experience will be experience by the user thanks to the exploitation of a multitude 

of sensors and environmental analysis (please note the different data formats and sources 

considered by the analytics in the toolbox) able to ensure a seamless and privacy-aware 

authentication.  

 

The closer collaboration of the technology providers of the project with the pilots and the 

suitability of the data analytics tools for the use cases of the latter has been expressed, for each 

analytics component, by the tables summarizing the “application to pilots” (and summarized in 

Section 8). As a matter of fact, the project pilots are designing themselves the products suitable 

for their infrastructure (Objective 6) through detailed requirements and domain constraints. 

Given heterogeneity and representativeness of the pilots, security and passenger experience in 

a pan-European multi-modal transportation can be improved to achieve a really integrated 

journey when the technology of the E-CORRIDOR framework and its components will further 

maturate and be ready to be adopted by the pilots and the represented transportation sectors. 

 

 

Please refer to the corresponding sections of the other project deliverables and in particular to 

the one in D5.2 for an overview on how the E-CORRIDOR framework contributes to the project 

goals. 
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10. Conclusions 
This deliverable presented the list of E-CORRIDOR analytics components identified at M12 as 

relevant to successfully achieve the requirements identified by the project pilots. The latter 

express a representative cross section of the transportation systems and are therefore useful to 

identify the needs for achieving a frictionless passenger experience and improving the cyber-

security toward a really integrated pan-European multi-modal transportation environment. 

The data analytics components are privacy-aware pluggable services available in the analytics 

toolbox of the IAI subsystem of the E-CORRIDOR framework. For each component, the 

proposed approach and technology have been framed with respect to the state of the art and 

data format and platform requirements. The match of the analytics with the pilot requirements 

has been expressed through the use cases, from which it is possible to notice the active 

participation of the pilots in the component design. Moreover, the important role covered by 

the analytics in achieving the needs of the multi-modal transportation and the project objectives 

has been outlined. Finally, synergies among analytics and advanced security services have been 

presented with the purpose of better exploiting the capabilities of all the components available 

in the E-CORRIDOR framework. 

 

The next period will be devoted to the refinement of the component features and requirements, 

and their development. Results on the first maturation of the data analytics techniques and their 

initial integration in the E-CORRIDOR framework will be reported in the next deliverable 

(D7.2, “Data Analytics techniques first maturation”) along with some preliminary 

demonstration.  
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A. Appendix 
 

A.1 Definitions and Abbreviations 

Term Meaning 

AAL Ambient Assisted Living 

ADAS Advanced Driver-Assistance Systems 

AI Artificial Intelligence 

API Application Programming Interface 

ASI Advanced Security Services Infrastructure (E-CORRIDOR framework) 

AT Airport-Train (E-CORRIDOR pilot) 

AUTOSAR Automotive Open System Architecture 

BLE Bluetooth Low Energy 

BYOD Bring Your Own Device 

CAN bus Controller Area Network 

CCTV Closed-circuit television 

CF Correlation filters 

CGW Central Gateway 

CO2 Carbon dioxide – air pollutant 

CNN Convolutional Neural Networks 

CSV Comma-separated values 

CTI Cyber-Threat Information 

CVE Common Vulnerabilities and Exposures 

CVSS Common Vulnerability Scoring System 

DBC Database CAN file 

DCT Discrete Cosine Transform 

DLI DSA Lifecycle Infrastructure (E-CORRIDOR framework) 

DMO Data Manipulation Operation 

DNA Here, as an analogy to the molecule that carries the genetic instructions 

DoA Description of the Action 

DPO Data Protected Object 

DPOS Data Protected Object Storage 

DSA Data Sharing Agreement 

DTW Dynamic Time Warping 

DWT Discrete Wavelet Transform 
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ECU Electronic Control Unit 

EEG Electro-encephalography 

ETSI European Telecommunications Standards Institute 

EU European Union 

FHE Fully Homomorphic Encryption 

FL Federated Learning 

e-wallet Digital wallet 

GHG Greenhouse gas 

GNSS Global Navigation Satellite Systems 

GPS Global Positioning System 

GTFS General Transit Feed Specification 

GRU Gated recurrent units 

HAR Human Action Recognition 

HCRL Hacking and Countermeasure Research lab 

HDFS Hadoop Distributed File System 

HMOG Hand Movement, Orientation, and Grasp 

HOG Histogram of Oriented Gradient 

IAI Information Analytics Infrastructure (E-CORRIDOR framework) 

ICA Independent component analysis 

ICT Information and Communications Technology 

IDS Intrusion Detection System 

IoT Internet of Things 

IP Internet Protocol 

IPS Intrusion Prevention System 

IR Infrared 

IMU Inertial measurement unit 

ISAC Information Sharing and Analytics Center 

ISI Information Sharing Infrastructure (E-CORRIDOR framework) 

ITS Intelligent Transportation System 

IVI In-Vehicle Infotainment (IVI) 

JAR Executable Java 

JRC Joint Research Centre 

JSON JavaScript Object Notation 

LBP Local binary pattern 
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LDA Linear Discriminant Analysis 

LPQ Local phase quantization 

LSTM Long Short-Term Memory 

MEMS Micro Electro-Mechanical Systems 

ML Machine Learning 

MoSCoW Must have, Should have, Could have, and Won’t have but would like 

MMT-ISAC Information Sharing and Analysis Center for Multi-Modal transport (E-

CORRIDOR pilot)  

MPC Secure Multi-Party Computation 

NED US National Elevation Dataset 

NN Neural Network 

OBD On-board diagnostics 

OCSVM One-class support vector machine 

OEM Original Equipment Manufacturer 

ORNL Oak Ridge National Laboratory 

ORS Open Route Service 

OSM Open Street Map 

OSRM Open Source Routing Machine 

OTP Open Trip Planner 

PCA Principal Component Analysis 

PRM People with Reduced Mobility 

PSR Private Secure Routine 

R&D Research and Development 

REST Representational state transfer 

RFID Radio-frequency identification 

RGB Red, green and blue – color model 

RGB-D Red, green, blue and depth 

RNN Recurrent Neural Network 

RPM Revolutions per minute 

RSSI Received Signal Strength Indicator 

SD Secure Digital – non-volatile memory card 

SDK Software development kit 

SecOC Secure Onboard Communication 

SIEM Security Information And Event Management 
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SIFT Scale-invariant feature transform 

SSO Single Sign-On 

SSR Special Service Request 

STIX Structured threat information expression 

S2C Smart cities and car sharing (E-CORRIDOR pilot) 

SVM Support Vector Machine 

TRL Technology Readiness Level 

2PC Secure Two Party Computation 

UC Use case 

UDS Unified Diagnostic Services 

US User story 

V2I Vehicle to Infrastructure 

V2V Vehicle to Vehicle 

XML Extensible Markup Language 

 

A.2 Details on specific Data Formats 

A.2.1 Examples of CAN bus Datasets 

In the following we show excerpts of different public CAN data sets and how the required 

information is logged there. 

 

Figure 20 Automotive Dynamometer (ROAD) CAN Intrusion dataset (ORNL) 

 

Figure 21 Automotive CAN bus intrusion v2 (TU Eindhoven) 
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Figure 20 and Figure 21 show excerpts from datasets in can-utils candump format. Here all 

values except for the timestamp are recorded as hexadecimal values. The message ID is 

delimited from the message payload with a ‘#’ symbol. The length of the payload is dependent 

on the vehicle and method recording. The ORNL dataset shown in Figure 20 always utilizes 

the maximum length of the CAN bus payload, whereas the CAN bus intrusion dataset from TU 

Eindhoven contains payload of variable length [166]. The candump format contains 

information on the bus where messages were recorded. There are no indicators on which 

message is an introduced intrusion, therefore an additional file containing metadata is required. 

 

 

Figure 22 HCRL Car-Hacking dataset 

 

 

Figure 23 Renault ZOE CAN bus dataset (Fraunhofer SIT) 

 

 

Figure 22 and Figure 23 show excerpts from datasets in csv format. Here all individual values 

are delimited by comma. The open HCRL Car-Hacking dataset [165] provides log files with 

decimal ID values and a payload separated into byte-sized hexadecimal fields, whereas said 

fields in the Renault ZOE CAN bus dataset, provided by Fraunhofer SIT, are decimal. With this 

data format the maximum length of the payload is always fully used, but an additional value 

depicting the actual length of the payload field is provided. 

All messages are also flagged whether they are valid messages sent from an ECU within the 

vehicle or originated from an intrusion scenario. Either directly introduced into the vehicle, as 

done in the HCRL dataset or synthetically introduced after recording, as done in the Renault 

ZOE dataset. 

 

A.2.2 Examples of Alert Indicators in STIX Data Format 

In the following we show some examples how alert information can be represented in STIX 

format. 
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Figure 24 STIX Format: Identity Example 

 

The STIX Intrusion reporting format utilizes a model of the system, where every relevant 

component is provided with a specific unique identity. This identity contains meta information 

on roles and sectors of the component, such as shown in Figure 24. 

 

 

Figure 25 STIX Format: Sighting Example 

 

 

On the occurrence of a security relevant event a sighting event is created and assigned to a 

specific identity. An example for such an event is shown in Figure 25. 

The object for such an event provides meta information, such as the relevant timestamps, 

number of previous occurrences of the same type, called observed-data (e.g., Figure 26), 

references to additionally provided data objects and a reference to a concrete indicator for the 

type of occurred incident. 
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Figure 26 STIX Format: Data and Attachments Example 

  

This indicator, as exemplarily shown in Figure 27, contains concrete information on the 

intrusion, such as a textual description of the incident, the related types and incident classes and 

potential information on which pattern or rules exactly were violated. 

 

 

Figure 27 STIX Format: Intrusion Indicator Example 

In addition to that, it is possible to include complete log files or excerpts from the 

communication between components with the intrusion reporting message in the form of binary 

blobs with additional type specification or any other formatted text, such as CSV or JSON.  

 

A.2.3 Examples of EARNEST Reports in STIX Data Format 

ECUs that generate cross-partition frames are challenged by EARNEST and failed challenges 

are reported using as example the following STIX format. 
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Figure 28: STIX object 

 

Line 6 and 9 of Figure 28 represent a relevant part of the object in which the confidence of the 

malicious activity is reported. In particular, line 6 indicates the percentage of failed challenges 

reported by EARNEST, and line 9 shows the BO_ID, e.g., the CAN bus frame ID, used in the 

cross-partition frame. 

 

Figure 29: STIX object observed data 

 

Always in the same object, in Figure 29 lines 59 and 60 indicate the observation time-window 

of the frame received by EARNEST. Then, in line 62, it is specified the number of challenges 

done that are consequence of the same number of cross-partition frames sent using that CAN 

id as shown in Figure 28, i.e., 1170. 


